THE AMERICAN SPECIES OF SNAPPING SHRIMPS OF THE GENUS SYNALPHEUS. ${ }^{a}$

By Henri Coutière, Of the Ecole superieure de Pharmacic, Paris.

HISTORY OF THE AMERICAN SPECIES OF THE GENUS.

The nominal species of Synalpheus from the coasts of America at the present time are eight in number, of which one, 1 lpheus precox of Herrick, is a nomen mudum. All of them appeared at first under the generic name of Alpheus: A. minus Say (1818), A. spinifrons Milne Edwards (1837), A. tridentulatus Dana (1852), A. saulcyi Guérin (1856), A. leviusculus Lockington (18is), A. saulcyi longicarpus and A. saulcyi brevicarpus Herrick (1891).

These nominal species are so imperfectly diagnosed that I have been able to retain the names of only three of them, Synalpheus minus (Say), S. brevicarpus (Herrick), and S. longicarpus (Herrick). This list could have been angmented by Alphous leviusculus Lockington, had it not been necessary to change the name (it having been preoccupied by Dana) to S. lockingtoni.

The A. spinifrons of Milne Edwards is from Chile. The type is lost, and I have seen no form from that region which exactly corresponds. Although Nicolet's drawing may be very imperfect with regard to the cephalic appendages, yet the scaphocerite seems to be much reduced, and this is confirmed by the text: " lámina basilar de las antenas esternas muy pegueña, sin llegar con mucho á la estremidad del pedúnculo de estos órganos." I do not believe that the species, in view of this circumstance, can be placed elsewhere than in the Lemmanus group. The small claw, it is true, is described simply "con algunas pelos," but the plume of long hairs, so characteristic of this claw in the group, could, in spite of its constancy, very easily pass unnoticed. This plume has never before been described or figured; but the unusual prevalence of the Levimanus group on the American coasts compels me to recognize the importance of this curious, though apparently insignificant, character.

Formerly, I identified Alpheus tridentulatus Dana with A. minus Say, by reason of the short and broad form of the frontal teeth and

[^0]the slight build of the small claw. Dana's species is from Rio Janeiro, and the species of the Brevicarpus group (to which A. minus belongs) are not as yet known to extend beyond Bahia. But that is a purely negative assumption, of very little value, and I still, as the most plausible explanation, consider that the antennal scale was accidentally omitted from Dana's drawing. The absence of this seale would suggest the Lavimanus group; but none of the species of this group have the external spine of the basicerite so short or the stylocerite so long. The exact identification of the form is, however, impossible because of the large number of closely related species and the slightness of the distinctive characters.

Alpheus minus is no longer represented by authentic specimens, except the two dried examples, fortmately alike, preserved in the British Museum and sent to Doctor Leach by Thomas Say himself. They can be identified with a rather common species from Florida and the Bahamas; such a determination would probably not be possible for all the specimens collected by Say, did they still exist. Another species from the same region, appearing to be even more common, is that which Herrick has described under the name of A. saulcyi brevicarpus, in opposition to his .1. santcyi lonyicarpus. Far from being elosely allied varieties of a single species, these two forms are in reality widely separated and easily distinguished; furthermore, S. brevicarpus, which I had formerly considered synonymous with S. minus (Say), is also distinet, and each of these two species possesses several subspecies, forming a small, well-defined group whieh may be designated as the Bremicarpus group, which, so far as is known at present, is characteristic of the American region.

I have not succeeded in identifying alpheus santryi Guérin with any of the forms which I have studied; the species belongs obviously to the Brevicarives group, being perhaps synonymous with S. brericarpus (Herrick). In Guérin's drawing the chief character which recalls this species is the narrow form of the antennules; but the frontal teeth, the scaphocerite, the superior prominence of the basicerite are very imperfectly figured. As Guérin's species is from Cuba, I should be more inclined to believe it synonymons with the new form which I have named S. brevicarpus guerini, which is also from the West Indies, and which in other respeets appears most comparable to Guérin's figure. This resemblance is, however, much too rague for me to consider myself justified in retaining the name of saulcyi, in spite of my desire to do so.

As to Ilpheris Tongicarpus, I have been able to examine two specimens received from Professor Herriek; because of the dissimilarity of these two specimens, I had thought it wisest to distinguish all those which eorresponded to them respectively under the name of longicarpus α and β, but this distinction is very far from being satisfactory; for
S. longicarpus a belongs in reality to the group which I call the Levmaxts group, from the name of the Meditermean species of Heller, a group which is characterized essentially by a brush of long stifl hairs on the movable finger of the small claw. I have been obliged to recognize eighteen species and subspecies belonging to it upon the American coast, so that the old specific limits have become greatly narrowed; I have retained the name longicarpus for that species which appears to be among the most widely distributed in the region of the Gulf of Mexico and the Bahamas, and which conforms to one of Herrick's types; the species has small eggs and its larvo are zoëte; in regard to S. longicarpus β, the specimens which I had at first grouped under that name are found to be referable to three very distinct species, each provided with numerous subspecies; that species which corresponds to the type specimen of Herrick is S. pectiniger, new species; the other two have received the names S. brooksi and S. herricki. All three have eggs of large size, from which spring mysis larre, and one of the species must certainly be Herrick's nominal species Alpheus precox, without its being possible to definitely determine which.

Sare for the preceding exceptions, all the forms, perhaps thirty species and rarieties, have had to receive new names. It is a considerable number, and surprised me at first. Although several present very strong resemblances to other forms of the eastern Λ thantic, the Indian Ocean, and the Pacific islands, all are peculiar to the American coasts. This is true also of S. lockingtoni, which is represented in the Indian Ocean by some closely allied species, which, in turn, are difficult to separate from specimens from the Red Sea, the Mascarene Islands, and from the west coast of Africa. It would seem that these specimens represent local races of a cosmopolitan species. There is, however, a remarkable exception in S. latastci. Chilian specimens of which can not be distinguished from Australian.

CLASSIFICATION OF THE SPECIES.

In view of the growing number of species of the genus Synalpheus, one is led to distinguish among them several groups composed of the more closely allied forms, which may be differentiated in the following manner:

KEY TO THE SPECIFIC GROUPS OF THE GENUS SYNALPHEUS.
a^{1}. Supraorbital spines insignificant compared to the rostrum; antennules shorter than the antemne; spines of the basicerite almost equal, the external always smaller than the stylocerite; external maxillipeds oval, feebly spinous distally; first segment of the carpus of the second pair of feet rery long: following feet cylindrical: rentral hook of the dactyl obsolete; telson with an oval median lobe_

Comatularum group.
a^{2}. Supraorbital spines at least equal to the rostrum in importance; antemmules at least equal to the antennæ; spines of the basicerite unequal, the exter-
nal often larger than the stylocerite, the internal often wanting; external maxillipeds cylindrical in form, very spinons distally; first segment of the calrons of the second pair aprroximately equal to the smm of the remaining segmonts; following feet flat in the sagittal plane; ventral hook of the dactyl as large as the dorsal ; posterior border of the telson ilmost straight. b^{1}. Didetyls of the third, fourth, and fifth fect with two unequal hooks, the rentral alwars stronger (up) to three times greater), often accompanied by a thitel prominence obtuse or spinous; meropodites often spinous; frontal spines always longer than wide at the base_-_-_Neoneris group.
b^{2}. Dactyls with two hooks approximately equal in width at the base; merobodites smooth.
(${ }^{1}$. Diatyls long and slender ; hooks directed with the axis of the dactyl, little curved, the dorsal longer ; scale of the scaphocerite always present: lateral shine of the basicerite slender; stylocerite longer than the basal article of the antemmbe.
d^{1}. Frontal teeth alwass longer than wide and sinons; rostrum armed with a rertical prolongation which embraces the ocellary beak.
l'aulsoni group.
d^{2}. Frontal teeth squarish, at most with eoneave margins; rostrum withont inferior vertieal prolongation

Brevicarpits groull.
c^{2}. Dactyls short: hooks strongly curved, the ventral directed normal to the lower border of the dactyl ; sale of the seaphocerite ordinarily mach reduced, often wanting; lateral spine of the basicerite always longer than the bas sal article of the antemmare, thick: stylocerite short.
d^{1}. Small chaw with a brush of thick and erowded long hairs normal to the dactyl: stylocerite at most equal to the basal article of the antemule ; carpus of the small cheliped longer than wide.

Levimanus group.
d^{2}. Small claw without a brush of hairs: stylocerite not reaching the middle of the median article of the antemmle: antennal scale narrow, not reaching beyond the extremity of the same artiele; carpus of the small cheliped short

Biunguiculatus group.
The Comatrlanda group is differentiated from the other groups by some rery marked characters, which are almost all characters found in the Iippolytidx and therefore suggest a less strong resemblance to the "Reptantia;" as frequently happens, there are added to these primitive characters others which show, on the contrary, an adaptation carried very far; for instance, the strongly curved hooks and the movable finger of the small chela surpassing the fixed finger: these characters are especially marked in S. comatularum, and are explained by its commensalism with the Comatulida, being implements of attachment for the Symelphens.

This group of very beautiful species appears not to occur on the American coast ; the steamer Albutross, of the C. S. Bureall of Fisheries, has collected a new species of it at the Gilbert Islands, the more remarkable because it possesses only a few of the mnusual characters of the group: The spines of the basicerite are equal and short, the first segment of the carpus of the second pair very long, and the following feet cylindrical. On the other hand, the antemules are equal to the antenna, the rostrum is scarcely more prominent than the
lateral teeth, the rentral hook of the dactyls is almost as strong as the dorsal, and the telson is straight along its posterior marginall characters not musual in S!ynulpherus. The other groups of species rary more or less from the preceding; the nearest are the Patlsoni and Brevicanpe's groups, in which the stylocerite still remains more prominent than the external spine of the basicerite, and the antennal scale is never wanting and sometimes is very wide.
The external spine of the basicerite begins to predominate in the Neomelis group, but this group presents, besides, two characters of the Hippolytidae but little modified, riz, the movable spines often present on the third and fourth meropodites and the frequent trimguiculation of the dactyls of the same feet, which is a vestige of the series of spines present on the dactyl in many of the Eucyphota.

There are no more than two hooks on the short and stocky dactyl in the Biunguiculatus group, of which the ventral, the more feeble, has a tendency to become normal to the lower border of the dactyl. On the other hand, the shortening of the stylocerite and of the antennal scale becomes very noticeable and the finger of the small chela of the second pair carries a brush of hairs arranged in series. The species grouped under this head are few, but they show the rery gradual comection between those which precede and the Lammanes group, the most highly differentiated of the Synalpheids in the direction of the "Reptantia." Here the antennal scale has very often disappeared without laving any trace, the lateral spine of the basicerite possesses a bulk which contrasts with the slight importance of the stylocerite, and the sexual differences often become very strong, one might say exaggerated, in regard to the size of the abdomen of the female and of the large cheliped of the male; finally, the finger of the small cheliped, in which the carpus has, however, remained more elongated than in any other group, bears a curious structure composed of from fifteen to twenty transverse rows of long stiff hairs, which are normal to the dactyl, and which diminishes in length from behind forward; this brush may be a cleansing organ in comection with the very sedentary life of these species, or it may conceal from the prey the extremity of the real prehensile chela. The only comparable organ in the Alpheidx is the tuft of long plumose hairs which is borne by the chela of the second pair in Cheirothrix parvimanus Bate, a genus, moreover, very like Synalpheus.

KEY TO THE SPECIES AND SUBSPECIES OF THE GENUS SYNALPHEUS.
NEOMERIS group.
(Represented on the American coast only by formis with the merolodites smooth and unarmed.)
a^{1}. Ventral sumernmerary brominence of the third, fourth, and fifth dactyls obtuse and scarcely marked.
b^{1}. All the apmendages slender.
c^{1}. Meropodites of the third pair four times as long as wide.
l^{1}. Antemall spine equaling the carpocerite_----------N. fritzmïllcri. d^{2}. Antemal spine surpassing the carpocerite_-s. fritzmilleri clongatus.
c^{2}. Meropodites of the third pair three times as long as wide_-_-S. nobilii.
b^{2}. All the aplendages stocky; meropodite of the third pair only 2.5 times as long as wide- \qquad s. sanlucusi.
a^{2}. Ventral supermmerary prominence of the third, fourth, and fifth dactyls spinous ind rery marked.

b^{2}. Antemary spine surpassing the carpocerite; traces of spines on the meropodites of the third pair. S. hemphilli longicornis.

PAULSONI group.

a^{1}. Carpocerite long, arising omosite the semaration of the stylocerite from the hasal article of the antemnta: meroporite of the third pair from 3.5 to 5 times as long as wide.
b^{1}. Basicerite unarmed abore, carpocerite 3.5 times as long as wide.
c^{1}. Palmar prominence spinons; angles of the telson sharp, the inner spines of its posterior horder 3 times longer than the onter spines.
d^{1}. lustrum at most equal to the basal article of the antemmus: antennary spine not smpassing the carpocerite \qquad S. tononscmdi. d^{2}. liostrum, frontal, and antennal spines more elongate.
s. townsendi productus.
c^{2}. Palmar prominence obtuse; angles of the telson right, the inner spines only twice the length of the outer- \qquad S. tomensendi brerispinis.
b^{2}. Basicerite with a right and not obtuse superior angle; posterior angles of the telson very sharl)----------------------S. townsemli me.ricanus.
b^{3}. Basicerite strongly spinous above; carpocerite ovoid, three times as long as wide.
c^{1}. Meropodite of the third pair less than four times as long as wide.
d^{1}. I actyl of the third pair about 3.2 times as long as wide at the base.
e^{2}. Carpus of the small cheliped spinons above; sine of the scapho-

e^{2}. Carpus of the small cheliped not spinons abore; spine of the seaphocerite shorter than the carpocerite_-_S. apioceros sanjosci.
d^{2}. Dactyl of the third pair 3.5 times as long as wide; carpocerite rery swollen, surpassing the antemule by 1.5 times its distal article; spine of the large claw continuing in a straight line its superior borderS. apioccros mayagnensis.
c^{2}. Meropolite of the third pair more than four times as long as wide.
d^{2}. Antennal spine longer than the antennule: rostro-orbital interval acute at base; spine of the large claw preceded by a tubercle.
S. apioceros leiopes.
d^{2}. Antennal spine at most equal to the antemule, rostro-orbital interval broad and sinuous at base; spine of the large claw continuing the superior border in a straight line_-_-s. apioceros desterrocnsis.
a^{2}. Carpocerite short, arising nearly opposite the median antennulary article; basal article of the antemule equal to the following, or 1.5 times as long, or more; palmar border of the large cheliped marmed.
b^{1}. Carpocerite three times as lomg as wide.
c^{1}. Meropodite of the third pair more than 3.5 times as leng as wide; large chela 2.9 times as long is high; antemal spine equal to the carpocerite
-s. Tockingtoni.
\mathbb{c}^{2}. Meropodite of the third pair less than 3.5 times as long as wide; large chela 2.5 times as long as high; antemal spine longer than the carpocerite, slender- \qquad s. latastci temuispint.
δ^{2}. Carpocerite less than three times as long as wide; antemme thick, scarcely four times as long as witle; meropodite of the third bair three times as long as wide s. Iutastci.
b^{3}. Carpocerite more than three times as long as wide; meropodite slenter, five times as long as wide; spine of the scaphocerite surpassing the antennule S. paulsonoüdes.

BREVICARPUS group.

a^{1}. Carpocerite cylindrical, slender, at least four times as long as wide; antemnal scale from 5.5 to 6.4 times as long as wide; basicerite almost marmed above: meropodite of the third pair from 4.25 to 4.5 times as long as wide; carpus of the second pair from ten to fifteen times as long as wide: telson 2 to 2.2 times as long as wide distally.
b^{1}. Lateral spine of the scaphocerite scarcely surpassing the scale; frontal teeth equilateral, short; eggs of large size, producing mysis.
S. brcricarpus.
b^{2}. Lateral spine of the scaphocerite long and slender; frontal teeth as long as wide at the hase; rostrum with concave margins; eggs small, producing zoëæe \qquad S. brevicarpus gucrini.
a^{2}. Carpocerite swollen, from 3.5 to 3.7 times as long as wide; antemal scale from 7 to 8.5 times as long as wide; carpus of the second pair less than ten times as long as wide; meropodite of the third par 3.4 to 4 times as long as wide; telson 1.8 times as long as wide distally; larra zoër.
b^{1}. Antenmules at most five times as long as wide; rostrum as long as the lateral teeth of the front.
c^{1}. Frontal teeth short, equilateral.
d^{1}. Superior spine of the basicerite feeble, as wide as long, that of the scaphocerite shorter than the carpocerite: small claw with elongated fingers. 2.8 times longer thatn wideS. minus. d^{2}. Superior spine of the basicerite twice as long as wide, that of the scaphocerite equal to the carpocerite; small claw with short fingers, 2.6 times as long as wide_-.......-.-----S. minus buhiensis.
c^{2}. Frontal teeth long, a little concave; carpocerite very swollen, from 3.2 to 3.5 times as long as wide; scaphocerite short; hooks of the dactyls often equal
S. minus antillensis.
b^{2}. Antennules more than five times as long as wide; rostrum shorter and narrower than the lateral teeth.
c^{1}. Carpocerite 3.5 times, meropodite of the third pair 3.4 times, as long as wite S. digucti.
c^{2}. Carpocerite 3.2 times, meropodite 3.25 times, as long as wide.
S. digueti ecuadorensis.

LeÆVIMANUS group.

u^{1}. Carpus of the small cheliped measuring always more than one-half of the chela in the adult (proportion included between $0.5+$ and 0.8 , but maly be reduced to 0.5 in the young).
b^{1}. Lateral spine of the basicerite smaller than that of the scaphocerite.
c^{1}. Fingers of the small chela each armed with three strong flat teeth, crossed in a vertical plane; no trace of antennal scale; spine of the scaphocerite shorter than the antennule; movable finger of the chela out of the perpendicular ; exgs of large size \qquad S. pectiniger.
c^{2}. Fingers of the small chela with only two teeth; spine of the scaphocerite equaling the antemule.
d^{1}. A trace of an antennal scale in the male; carpus of the small cheliped reaches 0.74 of the chela, diminishing to 0.5 and even a little less in the young S. lomgicarpus.
d^{2}. An antemal scale in both sexes; carpus of the small cheliped not exceeding 0.54 in the adult males \qquad S. longicarpus apmorrima.

b^{2}. Lateral spine of the basicerite equal to that of the scaphocerite, but both

 shorter than the antennule; antemal scale totally absent.e^{1}. Carpus measuring from 0.67 to 0.8 of the small chela.
d^{1}. Proportion of T. L.: H. ${ }^{a}=2.6: 1$ to $2.5: 1$; meropodite of the small cheliped 8 to 3.3 times as long as wide \qquad d^{2}. Proportion of T. L.: H. $=2.7: 1$, the chela being more slender; meropodite of the small cheliped four times as long as wide.
s. herricki dimidiatus.
c^{2}. Carpus measuring 0.65 of the small chela; proportion of T. L.:

c^{2}. Carpus measuring 0.56 of the small chela, proportion of T. L.: $\mathrm{H} .=$ $3.2: 1$; carpocerite 5.4 times longer than wide (instead of 4.8 to 5); feet of second and third pairs one-fourth stronger than in the preceding forms
S. tameri.
a^{2}. Carpus measuring about one-half of the small chela in the adult (0.45 to 0.52).
b^{1}. A well developed antennal scale in both sexes; carpocerite 6.5 times longer than wide; meronodite of the third pair 3.5 times longer than wide; small chela slender, proportion of $\mathrm{T} . \mathrm{L} .: \mathrm{H} .=3.33: 1$.
c^{1}. Spine of the hasicerite and of the scaphocerite shorter than the antennule s. puntionis.
c^{2}. Spines equal to the antemnule \qquad -S. pandionis cxtentus.
b^{2}. No antemal spine.
c^{1}. Basicerite spinous above; carpus of the second pair with four segments
S. ruthbunc.
r^{2}. Basicerite unarmed above.
d^{1}. Large chela 2.5 times longer than wide, its anterior palmar spine directed obliquely downward; supraorbital spines wide, learing between them and the rostrum U-shaped intervals; carpocerite 5.5 times longer than wide; meropodites of the third pair thick (proportion $3.3: 1$) ; eggs small; larvæ zoëæ_---------S. grampusi.
d^{2}. Large chela 2.7 to 3.25 times longer than wide; anterior palmar spine conical, directed obliquely upward; supraorbital spines obtuse, divergent: meropodite of the third pair slender (proportion $4.3: 1$ to $4.5: 1$) ; eggs of large size; larvæ mysis.
c^{1}. Carpus of the small cheliped measuring 0.5 of the chela.
f^{1}. Carpocerite 4.5 times as long as wide_-_------------ S. brooksi.
f^{2}. Carpocerite 5.5 times as long as wide__-_ S. brooksi strepsiccros. e^{2}. Carpus of the small cheliped measuring 0.53 to 0.57 of the chela ; carpocerite 4.4 times as long as wide_-.-.-. S. brooksi cleuthere.
a^{3}. Carpus measuring less than 0.5 of the small chela (0.43 to 0.4).
b^{1}. Meropolite and carpus of the third pair excavate, with a transparent outer margin S. androsi.
b^{2}. Meropodite of the third pair not excavate; carpus shorter than the propodite.
c^{1}. Brush of hairs of the small chela very reduced (about 30 hairs in 6 rows) ; antemal scale present in the male only_-_-_S. parancptunts.
c^{2}. Brush of hairs of large size, composed of 15 to 20 rows.
d^{1}. Carpocerite 3.5 to 4 times longer than wide: meropolite of the third pair + to 4.5 times longer than wide \qquad S. sunctithomer. d^{2}. Carpocerite 5.2 to 6 times, meropodite 3 to 3.5 times, longer than wide. e^{1}. Antemal scale present in both sexes_------------------ S. goodei. e^{2}. Antemal scale absent (or extremely narrow when it is exceptionally present) S. goodei occidentalis.

DISTRIBUTION AND DISCUSSION OF SPECIFIC CHARACTERS.

Table of distribution of the species of the genus symalpheus.
COMATULARUM GROUP.

Indo-Pacific forms.	American forms.	Mediterranean and West African forms.
S. comatularum Haswell.		
S. stimpsomi de Man.		
S. stimpsoni maldivensis Coutière.		
S. carinatus de Man.		
S. amboinæ Zehntner.		
S. albatrossi Coutière.		

NEOMERIS GROUP.

S. neomeris de Man.	
S. neomeris streptodactylus Coutière.	
S. nilundensis Coutjère.........	S. hemphilli Contière.
S. nilundensis oxyceros Contière	S. hemphilli longicornis Coutière.
S. muvieri Coutiere.	
S. pococki Coutière.	-
S. merospiniger Coutière.a	
S. fossor Paulsom.	
S. trimychis Contière.	
S. triunguiculatus Paulson.	
S. bakeri Coutiere	S. nobilii Coutière.
S. physocheles Contière. S. itemani Borradaile.	
S. charon Heller.	
S. otiosus Coutière.	
S. paraneomeris Contière.	S. fritzmillleri Coutière.
S. paraneomeris protatus, new name (=S. parancomeris oxyceros Contière).	S. fritzmülleri elongatus Coutière.
S. heroni Coutière	S. sanlucasi Coutière.

a For descriptions of this and other new extra-American species, see pages 89 to 93.

Table of distribution of the species of the gemus Synalphens-Continued.

PAULSONI GROUP.

BREVICARPUS GROITP.

S. brevicarpus (Herrick).
S. brericarpus guerimi Coutière.
s. minus (say).
S. minus brthirnsis Contière.
s. minus antill nsis Coutière.
s. Iliqueti Contière.
S. digmeti ecmadorensis Contière.

BIUNGUICULATUS GROUP.

S. biunguiculatus (Stimpson).
(?) S. spiniger (Stimpson).
S. biunguiculatus exilipes Coutiere.
S. biunguiculatus pachymeris Contière.
S. neptunus (Dana).
S. laticeps Coutière.
S. pescutorensis Coutière.
s. lophodartylus Contière.
(?) S. haddoni Coutiere.

LEVIMANTS GROUP.

S. spinifrons (M. EIWards) . (?)
S. lomqicarpus (Herrick) s. longicarpus approxima Coutière. S. goutci Contièré.
S.goodei occidentalis Coutière.
s.panduonis Coutiere..........
S. pandionis cxtentus.Contière.
s. grumpusi Coutière.
S.sanctithomx Coutière.
S. brookネi Contière.
S. broolini strequiceros Coutière.
S. brookisi clewtheræ Coutière.
S. herricki Coutière.
S. hrrrichi dimidiatns Coutière.
${ }_{S}$ S. hermeki angustipes Coutière.
S.tanneri Coutière.
S. pectiniger Coutière.
S. audrosi Coutière.
S. vathtuma Coutière.
S. puraneptumus Contlère.
s. licimanus (Heller).
S. parfaiti Contière.

The preceding table shows the relative importance of the several groups inhabiting the American coasts, and enumerates, without description, all the species of the genus Synalpheus which are known to me. There are also included a certain number of species, yet unpublished, from other localities.

This table brings ont well an important fact; that is, that the species of the Paulsony and Neomeris groups, especially the former, are the most widely distributed. This distribution accords with certain unspecialized characters which are found among them, namely, the short carpocerite, the rostrum always possessing an inferior vertical prolongation, continuing the ocellary beak, and the dactyls slender and elongated. The disappearance of the rostral partition, the elongation of the carpocerite, thick or not, and the shortening of the dactylopodites indicate forms less and less allied to the Hippolytidx and more and more Synalphean.

Before examining more closely the relation of the groups of species to one another, I ought to mention that many of the forms described have received trinomial appellations and correspond consequently to what zoological nomenclature designates as varieties, races, or subspecies, and to that which the botanists know under the name of " petites espèces." In employing the trinomial name to designate certain forms allied to one another, I simply wish to say that the forms represented by these names appear to me to be less distant from the species to which I attach them than the species is from another species. Most often these subspecies come from different localities and appear also to be distinct geographical races. This is, however, probably a result of the fact that the localities cited were the only ones explored. One should not forget that the stations noticed, rather numerons in Florida and at the Bahamas, for example, are restricted to a few points on the thonsands of miles of shore line along the entire Pacific coast and even on the Atlantic coast south of Florida. At other times these secondary forms, related to species easy to determine, come from the same locality as the species. This expression " same locality," in spite of its apparent precision, is most often very vague. Two closely allied forms can find upon the same reef very different conditions of life, which isolate them as completely as if a continent separated them. One specios inhabiting a sponge, another living attached by its hooks upon some species of madrepore, appear to me to represent a case of this sort.

It is possible, then, that the trinomial appellation which I uniformly employ does not correspond in nature to facts exactly comparable; that certain of the "races," "subspecies," or "small species" which it serves to designate merit a distinct specific name; that others, on the contrary, may be variations incompletely fixed of a species in a state of actual instability, the limits of which it has not been possible for me to fix more completely.

To return to the groups of species of the genus Symalpheus, the one which I designate by the name of the Paulsoni group, presents a most remarkable geographical distribution. S. paulsoni Nobili (perhaps identical with S. tricuspidatus (Heller)) is a species with short carpocerite from the Red Sea and the Persian Gulf, the affinities of which are to my mind very clearly indicated; it is separated, first from the forms with carpocerite equally short, but distinguished by the spinous palm of the large chela, or by the basicerite almost unarmed above, and again from the forms with carpocerite more elongate; variation in this last direction leads to some forms with the carpocerite elongate and slender (S. hmlulensis Coutière, S. tumidomanus Panlson, the latter very distinct on accomnt of its large eggs, producing mysis, and the spinons angles of the telson). In another direction there are found some forms in which the carpocerite is elongate as in those preceding, but, in addition, is swollen, and of an ovoid form (S. aeunthitelsonis Coutière, S. hastilicrassus Contière). In a third direction, finally, there are found some species differing from S. ponlsomi by the more massive aspect of the appendages; though indicated by a form kurracheensis, this evolutional tendency is more accentuated in the species S. latastei from Anstralia, which occurs without change in Chile, and which is also represented in Brazil by the form tenuispina. In Australia again, the species S. maccullochi Contière differs most markedly from S. paulsoni kurraeheensis by the presence of large eggs producing mysis.

There are found forms derived from N'. paulsoni at the Mascarene Islands and on the west coast of Africa, of which I have been able to study very unusual specimens from Cape Lopez and from Cape Verde; these are not strictly typical specimens, but can be separated only by careful study, and it is impossible for me to make them distinct species, in spite of the great actual geographical isolation, which can probably be considered as absolute.

On the American coasts are found exactly the same evolutional tendencies in this group; S. paulsomi and the other Indo-Pacific forms are not represented there by identical forms, but the differences are at times so slight that, withont indication of locality, the identification would be very difficult. S. lockingtoni differs from S. paulsoni almost solely by the spine of the scaphocerite being longer in the latter and smrpassing the carpocerite; with the exception of the place of origin, the second species would correspond to the "oxyceros" form so often met with that it appears to be almost a constant variation among the subspecies of a given species. ${ }^{a}$

[^1]This "oxyccros" form of S. Tockingtoni exists, moreover, on the coast of Lower California. It is at present represented only by a single mutilated specimen collected by M. Diguet (Paris Museum), the characters of which I believe to have specific value, and which I designate by the name S. peulsonödes. Compared to S. paulsoni, instead of S. lockingtoni, it differs by its appendages and especially the third pair of feet, which are more slender. This comprises the known variations in this direction, the carpocerite remaining short, with the exception, of course, of S. latastei of Chile and its tenuispina form from Brazil just now cited.

The second evolutional direction (the carpocerite remaining slender while becoming much elongate) does not appear to be represented on the American coast ; on the other hand, the forms with carpocerite long and swollen are predominant. S. apioceros Coutière is found here, accompanied by at least four varietal forms coming from California, Florida, the West Indies, Venezuela, and Brazil; in regard to the last four forms, one can not say whether the geographical isolation is real, or whether it only appears so because the intermediate connectives are not known ; but the isolation of the Californian form is absolute, and yet the differences which separate it from the specimens from Florida are quite as slight and difficult to detect as are those which separate these last from the other three forms which the species assumes. While it is possible that there may be as many species quite distinct and unrelated to one another, yet it is absolutely undeniable that the characters of these five forms are less distant than are those which separate S. apioceros from S. paulsoni. Nomenclature does not permit the expression of this, discarding (with good reason) every hypothesis conveying the idea of a possible affiliation between species-affiliation to which the idea of these "lesser species" directly leads.

Another species with carpocerite less swollen is S. townsendi, very widely distributed on both shores of America. It differs most of all from the preceding in the superior spine of the basicerite being almost or quite absent, so that these two species show a striking parallelism with S. acanthitelsonis and S. hastilicrussus Contière of the Maldives. S. apioceros and S. acanthitelsonis especially differ only in the angles of the telson, which are very sharp in the second species. The divergence is but little greater between the two others.

Those species with basicerite unarmed above are important from another point of riew, in that they permit of a passage to the Neomeris group by certain forms, such as S. parancomeris Coutière. This species, very widely distributed from the Red Sea to the Hawaiian Islands, with several "races" (probably among them the "oxyceros" form), differs particularly from the American S. townsendi or from S. hastilierassus of the Maldives by the dactyls of the
third, fourth, and fifth feet bearing a third and rery obtuse ventral prominence. This prominence, very frequent in the Neomeris group, sometimes becomes a strong triangular hook, but a character still more often met with (with or without the last) is the reduction of the dorsal hook of the dactyl, the rentral hook taking the form and thickness of a wooden shoe, as in the curious species S. charon Heller. The Indo-Pacific region harbors a large number of species of this group, very easy to distinguish by reason of the characters in the striking form of the dactyls; among them those are especially curious in which exist-or reappear-the rows of spines of the meropodites, so constant in the primitive Encyphota, and persisting in the Alpheidx only on the propodite.

These forms of the Neombris group with spinous meropodites appear to be totally absent from the American coasts. There also the parallelism with the Indo-Pacific forms is carried very far. Between S. hemphilli Coutière of Florida and S. nitandonsis Coutière of the Maldives (both of which show an "oxyceros" form) there is no difference except the presence in the latter, and the absence in the former, of the meral spines; and yet, oddly enough, one quite full-grown specimen of S. hemphilli, from the Bermudas, shows on one side only a single meral spine. It is difficult to record such observations without thinking of a common origin for the two species, so completely separated at the present time, and yet so strictly parallel.

Another species, S. fritzmüller; Coutière of Florida and the West Indies, exists also in Venezuela and Brazil, where it is represented by the "oxyceros" form; it is found again in California with the meropodites more slender. In Ecuador S. nobilii Coutière, a form in whieh the meropodites are, on the other hand, shorter and more swollen, replaces S. fritzmülleri. In the Indo-Pacific region, S. bateri Coutière, in which the supernumerary ventral prominence is very feeble, is the species most closely allied to the preceding ones.

Another very striking instance of parallelism is the existence in Lower California and in the Red Sea of the species S. sanlucasi Coutière and S. heroni Coutière respectively, both characterized by the very massive form of all the appendages. The modes of differentiation of the species are again repeated. A form being found, for example, with a short carpocerite, one may expect to meet those with a long earpocerite, then those with more slender members, with more massive members, with basicerite spinous above, or not, with large chela unarmed or spinous on the palmar border, those in which the angles of the telson are prolonged in a spine or not, etc. One can not avoid drawing the conclusion that such a constancy in the modes of variation strongly resembles an hereditary tendency, due to the small number of species from which the genus Synalphous must have sprung.

The Brevicarits group is extremely like the Padlsoni group, and it is rery possible that it may have been derived from the latter; the absence of an inferior vertical prolongation of the rostrum, the fact that all the species known have the carpocerite clongated, often swollen, indicate derivative and not primitive forms. On the other hand, it is there that are found the species having the largest antemnal scale (S. brevicurpus Herrick), which is a character directly opposed to the preceding; but S. brevicarmes is a species with very large eggs producing mysis, a character which appears especially to show itself in those forms which are most highly developed. Finally, the Brevicarive group is, up to the present time, exclusively American. Should its presence be established in some part of the Indo-Pacific-in Anstralia, for instance-the American region would surely remain its true country. Compared to the preceding groups it has an unusual distribution, inasmuch as the species which compose it extend from the Bermudas to Brazil and from California to Ecuador, exactly like the American forms of the Pallsoni or Neomeris groups. These last appear to have had rather an IndoPacific origin, if one may judge by the number and variety of the forms which represent them in that region. One is led then to wonder if the origin of the Brevicarpus group ought not to be sought for also in some of the species of the Paulsoni groups; this might have found only in American waters the conditions which have bronght about its variations in the direction of the Brevicarpus group.

Being given the form brevicarpus, the most typical species with small eggs is S. minus (Say), from which one is able to derive an "oxyceros" form from Brazil, an antillensis form with antennules short and carpocerite more swollen, and a form with antennules very long and slender, S. digucti Coutière from Lower California. A form of this species, S. ecuadorensis, exists upon the Pacific coast of South America. The species S. brevicarpus (Herrick) with very large eggs differs in its more slender carpocerite and larger antennal scale. It is the largest species of Synalpheus known. All these species are separated by slight differences. It is probable that S. minus (Say) comprises several "races" other than those indicated here and behaves as does S. paulsoni in the Indo-Pacific region.

The Biunguiculatus group includes among its species S. neptunus (Dana), the types of which I have been able to examine, and specimens of which have also been sent me from Australia by Mr. McCulloch. S. Taticeps Coutière, of the Maldives, is very like it. These two species have the finger of the small chela widened and spatuliform, ornamented besides with some long hairs, which in S. neptunus are arranged in rows. These hairs are directed obliquely downward, and isolated, which is not the usual disposition in the
group. In S. biunguiculatus Stimpson, in the forms pachymeris Coutière, lophodactylus Contière, and pescadorensis Coutière, these hairs are disposed in tufts formed in line, directed obliquely downward or even perpendicular to the surface of the mobile finger (S. lophodactylus Coutière) ; at the same time, the chela terminating the second pair is provided with a large number of tufts of long hairs, some carried by the palm, especially on its lower face, others by the movable finger, these last armanged regularly in a brush.

Judging by the sketch of an Australian specimen at the British Museum, taken some time previously, S.spiniger (Stimpson), with recurved hook, would also fall in this group, but this is not significant at the present time.

No American species, unless it be S. spinifrons (H. Milne Edwards), belongs to the Biunguiculatus group; this species can be equally clamed by the Lermanus group, this group, as I have pointed ont, being the continuation, pure and simple, of the preceding one, the characters of which it extends to the extreme limit, especially those which concern the reduction of the antemal scale. The character which essentially distinguishes the two groups, in spite of its constancy and its importance, is itself only the variation in the cleansing apparatus present in the species of the Bungaulculatus group; the bristles of the chela of the second pair, especially those of the movable finger, have not persisted in the Levimanus group, while the brush of the little chela of the first pair has acquired the quite remarkable development that I have described above. If one tried to express these facts in plain language one would say that the experiment of the numerous cleansing appliances had been abandoned in the descendants of certain of these species, and that a single apparatus, much more perfect, had been substituted for them.

The continuity of the two groups is so evident that it leads to this conclusion: If the species of the Biunguiculatus group are not represented on the American coasts, it is because they have all undergone the variation toward the Lambmanus gromp, with the exception, perhaps, of S. paraneptumus Coutière, a species particularly instructive because of the much more feeble development of the brush of bristles of the small claw.

In the Indo-Pacific region, on the other hand, this variation appears to be very rarely realized, since the only species which presents it up to the present time is S. sladeni Coutière, which has not, however, altogether the aspect of the American species of the Liminianus group.

A rather similar condition is observed in the relations between the Paulsoni and Brevicarpus groups, with two differences: First, the species of these two groups are still found side by side on both American coasts; second, the known distribution of the Laminanus
group is at present much less restricted than that of the Brevicampes gromp, since it is known in the Indian Ocean, on the west coast of Ifrica, and in the Mediteramean. If the idea of time could be introduced into these datal, one would say that the differentiation of the Brevicarpus group is more recent; thus would also be explained its presence exclusively in America as well as its coexistence with the Paulsoni group, from which it has come, and its relatively small number of species. All these characters are opposed to the much wider distribution of the Levimanus gromp, to the localization of the derived species of the Biunguiculatus group and to the excessive development of the forms which characterize the Levimants group.

The armature of bristles of the small claw gives to these forms a common aspect so characteristic that it can hardly be believed, in a superficial examination, that there is room for so great a number of species within a compass of differences apparently so slight. It is, however, probably true even further than I have indicated, that several of the races or subspecies have a specific value. On the whole, one may say that the species of this group tend toward the elongation of the wrist of the small claw and the suppression of the antennal scale. These two tendencies are met with occasionally within the same form, such as S. longicarpus, in which the length of the wrist varies from once to twice the width with the age of the specimens. But there are grafted onto this general plan some characters quite unexpected, such as the curious form of the fingers of the small claw in S. pectiniger, the excavated meropodites of S. androsi, and the basicerite with a longitudinally spinous superior surface, of S. rathbunce. No other group gives the impression as does this one of having sprung from a single species, by "explosion" of its characters (to employ the expression of Standfuss), characters which might be regrouped by chance like a combination of letters.

Remarkable from a morphological point of view, the Levinanus group is no less remarkable as to conditions of existence. It is the only one in which a single hanl of the dredge of the U. S. Fisheries steamer Albatross (Station 2413) has been able to bring up from 5,000 to 3,000 specimens (belonging to the two species, S. Iongicarpus (Herrick) and S. pectiniger Contière). It is this group in which anomalies in the laying of eggs are met with most frequently; among 227 females of S. pectiniger (Station 2413), of which I have determined the sex by examining them singly with the greatest care, I have been able to find only two or three in which the pleura were normal and the eggs present, and have been able to find none with the very large eggs carried by the normal females. The males which accompany them are 320 in number, with some closely united, all inferior in size to the normal. I propose to conduct investigations

Proc. N. M. vol. xxxvi-09-2
to determine whether the castration so general among these females is due to a parasite, Microsporidian or Bacterian, or simply to hunger. Neither do the S. longicarpus which accompany them possess their maximum size; the males are largely in excess, but the eggs of the female are altogether normal.

One frequently finds some anomalies of the same sort in S. brooksi Coutière, in which the eggs give rise also to mysis as in S. pectiniger. The eggs may be reduced to two or three; they are them very small and of a chalky aspect, and at the same time the size of the female is very much reduced. S. rathbunce is known to me up to the present time only by some sterile females, very small, in which the pleura are extremely spinous as in the male.

These species appear, then, to be sometimes found in very precarions conditions, from the point of view of their perpetuation, and the study of these conditions would probably be most interesting; their abundance in the collections accords well with what Herrick says when he speaks of the constant fusillade which one hears on the reefs of the Bahamas from the movements of the Alpheids, and it seems to me that they would lend themselves to constant observation in an aquarium in such a manner as to make possible some " pure cultures" of a determined species.

After an examination of the facts, it is difficult to a void the temptation to draw from them some hypothetical conelusions. When one investigates the distribution of the Synalpheids known at the present time, the most striking fact is the existence of forms almost identical in regions so remote as the Red Sea and California or Florida. Now, these are very sedentary animals, which are almost never seen to swim, but live in couples in sponges or madrepores; their larva, to be sure, could be disseminated by the currents, but the possible extent of that dissemination should not be overestimated, and when two species are separated by both the Pacific and the Indian oceans, they are certainly isolated in the most rigorous fashion. I can not repeat too often that the Indian S. poulsoni and the Californian S. puulsonö̈des, S. mushaenis and S. lockingtoni, S. acanthitelsonis and S. apioceros, S. milandensis and S. hemphilli, etc., might very well, without indication of locality, be considered as simply "races," and there is the inevitable inference that former conditions under which the antecedent species lived permitted a very vast distribution. Nothing shows that these species still exist, but at all events they have changed, since the forms which represent them in different localities are no longer exactly comparable. There is, as an exception, only the single species S. latastei, the specimens of which from Chile I can not differentiate from another-a single one, it is true-from Australia. This exception, when critically examined, only goes to strengthen
very much the idea of species primitively widely dispersed; perhaps it will even render less nneertain the position of the continuons line of coast along which the dispersion might have been made. It seems to me that one might sketch this original distribution muder the form of a few waves of very great amplitude, on which, at variable points, might have originated new systems of waves of the second order, of less amplitude. S. paulsoni at one extremity, s. paulsonoüdes at the other, would represent such systems, turning aside more or less from the wave of the first order, to continue the comparison, being able even to substitute themselves for it and to efface it. On these would be produced, by the same hypothetical mechanism, waves of the third order. of still shorter amplitude, as, for examples, the races or sub--pecies with trinomial appellations which are attached so obvionsly and so closely to S. upioreros, to S. townsendi, to S. minus, and to S. herricki. The comparison permits us even to imagine that the characters served at first to distinguish species, and that as the waves spread and multiplied they changed their original valuation and became characters of groups, and even generic characters.

In order to complete the hypothesis, one might speak of the "pebble" which, falling on the summit of a wave of great amplitule. might have given rise to a new system of vibrations, otherwise called a new form. If one seeks to represent the one or the other of the two possible mechanisms, insensible "fluctuations" or sudden "mutations," one encounters the same impossibility of knowing. It is easy to see at a glance that the two modes do not exclude each other, that they are even very near to overlapping, provided we admit an amplitude small enough for effectual variations. There are perhaps some zoological groups which behave in a different manner from this point of riew. Each molt of an arthropod is a "mutation," while a vertebrate" fluctuates" in order to attain its adult characters. According to Professor Bouvier, who has in such a masterly manner demonstrated the reality of mutations among the Atyida and their great amplitude, it would not be surprising if one found among other Crustacea analogous examples.

I think I can say that the Synalpheids at the present time show nothing similar. I have examined, drawn, and measured all the specimens of which I speak, excepting in the cases where the species comprised several hundreds or more than a thousand specimens, which for want of time I have only examined. The details which can be referred to the facts of mutation by their musual presence in a series of specimens appear to be very few in number and withont special importance. For example, first, one of the specimens of S. apioceros somjosei has no spine on the anterior border of the wrist, which fact permits of no hesitation in its determination; second, one
of the specimens of S. hemphilli longicornis bears a movable spine on one of the meropodites of the third pair; it is the reappearance, very interesting, of a character present in many of the Neoneris species (Indo-Pacific), which seems to have disappeared in the American species. even those most like the preceding. It is not a "mutation" permitting one to moderstand the process by which a new form is originated; third, a specimen of S. minus possesses on the anterior border of the palm of the small chela a spinous tubercle as on the opposing chela : this is a " mutation " which is not absolutely rare in the Alpheidx, and which I have seen even carried so far as to result in the complete symmetry of the two claws of the first pair in a rery curious specimen of Alphens dentipes Guérin. But the Alpheidr have originated from forms with symmetrical claws; there, again, it is the question of the recurence of a remote character, and not the indication of a new evolutional line; fourth, some specimens of very small size of S. Iongicerpus, and of S. Drooksi also, have only four segments in the carpus of the second pair' this detail characterizes the species S. rathbunu, which is far from being the nearest to S. brooksi, but it characterizes also the genus Arete, the relations of which with the genus Synalphens are truly rery remote.

Concurrent with these facts, obvious, but without importance, may be cited other facts of greater weight but without proofs. The characters of the subspecies S. Urooksi strepsiceros, S. herrichi dimidiatus, S. herrichi ungustipes, and of S. tameri, occurring either among a series of typical specimens or in some localities where the typical specimens also occur, make one think of some " mutations; " it is, in fact, as I have said before, the case in the entire Lammanes gromp; close relationship, a general resemblance of the forms which make part of it, but a great variety of combinations of a small number of characters, of which one at least is absolutely constant, certain combinations rarely realized, while others are frequent - even taking into accom certain errors in the appreciation of the scarcity or the frequency of the type-a distinct aspect and clear-cut, though slight, differences. These are mere impressions without proofs, but which, I believe, would occur to every naturalist who has been able to study in its entirety so homogeneous a group: and it would certainly be interesting to attempt for a few of the species of the Lemmanus group some "pure cultures," continued during sereral generations. supposing that one might surmount certain considerable difficulties involved in such an attempt.

This work, in which the greater part of the forms described are new, necessarily allows of very few bibliographical references; those pertaining to the species of Say, Herrick, and Lockington, the names of which I have been able to retain, are given with the descriptions
of these species; for all the others. I refer to my work on the Apheider in general, ${ }^{a}$ and to the paper on the Mpheida of the Maldives. ${ }^{\text {b }}$

DESCRIPTIONS OF SPECIES.

PAULSONI Group.

SYNALPHEUS LOCKINGTONI, new name.

Alpheus leviusculus Lockington, Amn. and Mag. Nat. Hist.. 1878, p. 478 ; not Alphens collcurdsi var. leviusculus Dana, 1852.
I believe that I have rediscovered the species described by Lockington, although the specimens which represent it differ in slight details from his description.

Fig. 1.-Synalphets lockingtoni. a, frontal and antennal region; c, carpoceitite; κ, large chela : k ', small cileliped of first pair: l, foot of second pair ; m, foot of thitid pair ; m ', dictyl of third pair ; t, telson.

The rostrum is a little longer than the lateral spines; it reaches the extremity of the basal antennular article, from which it is separated by notches which are narrow, but not sharp, at the base.

The last two antennular articles are practically equal, the antennule being 4.4 times as long as wide; the basal article is only 1.5

[^2]longer than the median; the stylocerite usually reaches the distal third of the median antennular article, but always to at least the middle of the article.

The lateral spine of the basicerite is as long as the rostrum; the lateral spine of the scaphocerite is very slightly shorter than the carpocerite, which is short, beginning at the distal third of the basal antemnular article, three times as long as wide, the margins almost parallel, excepting at the base, where it is slightly swollen; it exceeds the antemule by one-half the length of the distal article; the outer maxillipeds exceed the antennule by abont one-half of its length.

The anterior margin of the palm of the large chela terminates in a conical tubercle, short and always destitute of a spine, as Lockington distinctly says. I found the proportions of the chela to be: Finger 1; total length 3; height 1.1 ; proportion T. L.: H.=2.9:1. The anterior margin of the meropodite terminates in a triangular point.

The proportions of the small chela are: Fingers 1; total length 2.36 ; height $0.8+$; proportion T. L.: $: \mathrm{II} .=2.8: 1$. The carpus is not spinous on its superior margin; the meropodite terminates on this margin in a triangular point, its thickness being a little less than that of the palm, contained 1.9 times in its length.

In the second pair the first segment of the carpus is slightly shorter than the sum of the four following ones; the meropodite is shorter than the carpus.

The meropodite of the third pair is approximately equal to the carpus of the second pair, and 3.75 times longer than wide. The proportions of the members are: Carpus 1: propodite 2 ; meropodite 2.15 : the dactyl is rery slender, the dorsal hook twice as long as the ventral.

The posterior angles of the telson are right angles, not prolonged to a triangular prominence.

Named for Mr. W. N. Lockington, the original describer of the species.

The description by Lockington-very explicit as to the length of the antennal spines, the form of the chela of the first pair, the carpus of the sccond pair, the dactyl of the third pair, and the telson-appears to permit identification of the specimens of S. levinsculus with those which I have studied. The differences bear upon two points: Loekington says that the spine of the scaphocerite does not reach the extremity of the peduncle and that the movable finger of the large chela projects beyond the pollex. The first character hardly exists on the specimens that I have seen, the spine being approximately equal to the carpocerite and the finger:s of the large chela equal.

Lockington's specimens came from Port Escondido. Port Mulege. and other points in the Gulf of California. Those which I have studied were collected by the steamer Albatross, of the U. S. Bureau of Fisheries, on the California coast at Station 4221 , eastern point San Nicolas Island N. 26° W. 3.8 miles, 229-298 fathoms.

This species is particularly ioportent because of its resemblance to S. paulsoni Nobili from the Red Sea and the Persian Gulf. There is but one difference between the two species: The spine of the scaphocerise in S. paulsoni always exceeds the carpocerite. If, however, one were studying the two species without a knowledge of their source, one would be led to make of the S. peulsoni an "oxyceros" form of S. loclingtoni.

Fig. 2.-Sfralphets paitlsoni. a, frontal and antennal region; c, CARPOCERITE; m, PORTION OF THIRD FOOT.
S. paulsoni, in the group which bears its name, is a form with short carpocerite, that article arising a little below the extremity of the

Fig. 3.-SyNaLpheUs PaUlsoni kUrracheensis. a, FRONTAL AND ANTENNAL REGION; r, CARPOCERITE; K, LARGE CHELA ; 1, FOOT OF SECOND PAIR; m, MEROPODITE OF THIRD PAIR. basal article of the antennule. It is a character which seems to me to be very essential for the diagnosis of the species of the group, the carpocerite being elongated and slender or elongated and thick, and also important because the forms with short carpocerite may be considered as less developerl, as that article is always short in the primitive Eucyphota.

In the Indo-Pacific region. S. paulsoni is surrounded by a certain number of derived forms: S. paulsoniliminaris Coutière, in which the carpocerite is a little longer and the basicerite almost normed above; S. panlsoni rameswarensis Coutic̀re, in which the interior palmar border is spinous; and S. paulsoni liurracheensis of a more massive general form, very interesting, in that it indicates the direction
in which the species S. Tutustei, of Australia and Chile, is differentiated. I have believed it possible to separate as a distinct species S. Inlulensis Contière from the Maldives,

Fig. 4.-SiNALPHEtiS HULULENsis. $\quad t$, FRONTAL AND ANTENNAL REGION: c, CARPOCERITE; t, TELSON. which I have described in my work on the Alpheidae of that archipelago under the name of S. tumidomanus Panlson; but S. tumidomamus is very distinct from it, as shown by the angles of the telson being clearly spinous (as Paulson has figmed it), and also by the rery large eggs which give rise to mysis. In these last two forms the carpocerite has become distinctly elongate and slender (at least four times as long as wide).

I have also separated from S. paulsoni, under the name of S . mushuensis Coutière, a specimen from the Red Sea, received from M. Gravier, in which the antennal scale is notably shorter than the antennule and still shorter than the carpocerite. This species is again extremely like S. lockingtoni from Califormia and Lower California.

Although the forms with a short carpocerite are at present less numerous on the Californian coast than those with a long one, the parallelism between them and those of the Indo-Pacific is again accentuated by the following species which I believe should be separated from S. Toclingtoni.

SYNALPHEUS PAULSONOÏDES, new species.

The species differs from S. Torkingtoni by the following points:

The antemal seale equals the antenmule, and the lateral spine of the scaphocerite considerably exceeds the carpocerite, which is four times as long as wide. The carpus of the small cheliped has its anterior border prolonged in a spinous prominence. The feet of the third pair are rery slender. Their proportions are: Carpus 1: propodite 2 ; meropodite 2.35 ; this last being

Fig. 5.-SiNALPHEUS TUMIDOMANUS. ", FRONTAL AND ANTENNAL REGION: c, CARPOCERITE; t, TELSON. 5.3 times as long as wide.

The specimen, a male is unique and its large cheliped is wanting; but it is very easily distinguished from S. Tochingtoni, especially by the sleaderness of the meropodites of the thind pair. It corresponds, as the Indo-Arabic S. paulsoni, to an "oxyceros" form of the species
previonsly cited, but in a different direction. I'p to the present time, in fact, I know of no form which is exactly the same in both regions.
S. penlsonö̈des is from the island of San José, Lower California (M. Diguet, Paris Museum).

On the South American coasts the species with short carpocerite of the Parmoni group are similarly represented. The species S. lutustci Coutière, described below, is of great interest. It possesses in Brazil a "temispina" form which is with difficulty separable from some specimens from Cape Lopez, in West Africa. On the other hand, it exists in Australia, for I can not differentiate from the typical Chilean specimens the unique Anstralian individual which I have examined. In Australia, moreover, a species with ver!y large eggs, S. maccullochi, is shown to be closely allied, and S. panlsoni Romrrachecnsis, previonsly cited, clearly resembles it also, thongh its appendages are a little more massive.

SYNALPHEUS LATASTEI, new species.

The rostrim is longer than the frontal spines, and also wider; the antennular articles are short and approximately equal; the proportion of the antennule is only $1: 3.85$, the diminution in length affecting especially the basal article; the stylocerite is shorter than in S. lockingtoni; the lateral spine of the basi-

Fig. 6.-SrNALPHEUS PAULSONGÏDEs. u, FRONTAL AND ANTENNAL REGION ; c, CARPOCERITE; m, MEROPODITE OF THIRD FOOT. cerite is as long as the stylocerite; its superior spine is short and strong.

The antennal scale, rather reduced, is 5.7 times as long as wide, and its long and strong lateral spine exceeds the antennule by the length of the distal article, and usually slightly exceeds the carpocerite, which arises from the same level as the median antennular article; the proportion of its dimensions is $1: 2.71$, sometimes eren 2.66 ; its form is more cylindrical than in S. Torkingtoni.

The large chela, which recalls the preceding species by the absence of any spinons prominence on the anterior margin of the palm, differs from it by its more stocky form: Fingers 1; total length 3.4; height 1.). The small chela has the same proportions as in S. loclingtoni; the meropodites of the two chelipeds terminate on the superior margin in a spinous prominence.

In the second pair, the first article of the carpus, the four following and the chela are to one another as 1.2, 1.2., 1. The proportions of the third pair are: Meropodite 2; carpus 1; propodite 1.6 ; the meropodite is 3.12 times longer than wide, and consequently very stout.

The telson has the same form as in S. loclingtoni. This species seems to be frequent in Chile, from which locality I have been able to examine some ten specimens, thanks to M. Lataste, of the Paris Museum, after whom the species is named; the species is also met with in Australia (?) (one male of great length without indication of locality other than New Holland; Paris Museum).

The size is greater than in S. loclingtoni. It reaches 30.5 mm . in length from the rostrum to the telson.

I have been obliged to separate from the typical species, under the name S. lutustei temispina, a large female from Desterro which dif-

Fig. 7.-Synalpiffits latastei. a, frontal and antennas, region, male, Australia; a^{\prime}, FRONTAL AND ANTENNA REGION, FEMALE. ('HILL; c, CARPOCERITE; \boldsymbol{K}, LAKE CHELA: i^{\prime}, SMALL CHELIPED OF FIRST PAIR; 1 , FOOT OF SECOND PAIR: m, FOOT OF THIRD PAIR.
firs from it in the following points: The antennule is less thick (four times as long as wide instead of 3.85) ; the scale of the scaphocerite equals the antennule, and its very sharp lateral spine exceeds the carpocerite very considerably, the latter being 3 times, or even $3.0 \frac{1}{4}$ times, longer than wide. The meropodite of the third pair is 3.3 times as long as wide, instead of 3.1 times, as in S. latustei.

This form approaches closely to S. Iockingtoni from California and Lower California. differing from it, however, by the large and more massive chela (proportions T. L.: H. $=2.5: 1$ instead of 2.9:1), the
fingers of which are shorter (fingers 1, height 1.4, instead of 1.1). The feet of the third pair are also more massive (meropodite 3.3 times as long as wide instead of 3.it), and the feet of the second pair. as in N. lutustei, have the distal chela feeble and the first segment of the carpus equal in length to the four following ones.

Fig. 8.-Synalpuet's Latastei tenuispina. a, frontal and antennal region ; c. CarpoCERITE; K, LAEGE CHELA; k^{\prime}, SMALL CHELIPED OF FIRST PAIR; l, FOOT OF SECOND PAIR; m, aleropodite of third paik.

Desterro, Brazil; Fritz Müller; one female 30 mm . long (Paris Museum).

SYNALPHEUS APIOCEROS, new species.

On the Atlantic coast of America the Paulsoni group is represented by additional species; one of them, S. townsendi, described farther on, is, up to the present time, the most aberrant form of the group known ; it possesses no spine in the superior angle of the basicerite, and thus closely resembles S. paraneomeris of the Neomeris group; this resemblance is further accentuated by the fact that the dactyls of the third, fourth, and fifth pairs in the preceding species possess only a trace of trimguiculation. Thus these two species mark the varietal limits of the two groups of forms.

The other species, S. apioceros, also new, is, on the other hand, very trpical. It is of special interest because of the great number of allied forms, American or Indo-Arabic, which may be approximated to it.

The rostrum is equal to the lateral tecth, from which it is separated by intervals acute at base ; the antemnule is about 4.6 times as long as wide, but its basal article is 2.2 times as long as the median, and considerably exceeds the frontal teeth. This is a character which distinguishes this species at once from S. lockingtoni.

The stylocerite scarcely reaches the middle of the median article; the superior spine of the basicerite nearly equals the frontal teeth; its lateral spine does not reach the extremity of the basal antemular article; the scale of the scaphocerite, five times as long as wide, is shorter than the antemnule, its lateral spine slightly shorter than the carpocerite, which last, three times as long as wide, is swollen at the base and pyriform; it is long in the sense that it takes its origin below the point where the stylocerite is detached from the basal article of the antenmule and that it exceeds the antennule by about two-thirds of its distal article.

The outer maxillipeds do not exceed the carpocerite. The large chela has the following proportions: Finger's 1; total length 3.15 ;

 LARGE CHELA; $K^{\prime \prime \prime}$. CARPUS OF LARGE CHELIPED; k^{\prime}, SMALL CHELIPED OF FIRST PAIR; l, FOOT OF SECOND I'AIR: m, FOOT OF THIRD I'AIR; m^{\prime}, DACTYL OF THIRD PAIR ; t, TELSON.
height about 1.28 ; the proportion T. L.: H. $=2.8: 1$; the anterior border of the palm is swollen in a tubercle, which terminates in a spine directed slightly obliquely downward.

The small chela has, as proportions, fingers 1 ; total length 2.8 ; height 0.95 ; T. L.: $\mathrm{H} .=2.95: 1$; it is thus relatively slender with short fingers; the wrist is spinous on its supero-external border: the meropodite, a little less thick than the palm, is 2.35 times longer than wide. The proportion of the two chela is about $1: 3$.

In the second pair the first segment of the carpus equals apparently the sum of the others, and the meropodite is more slender than in S. loclimgtom; the chela is also notably shorter.

The proportions of the third pair are: Carpus 1 ; propodite 2 ; meropodite 2.28 , this last being a little more than font times as long as
wide. The dactyl is slender, about 3.2 times as long as wide, with the ventral hook relatively shorter than in S. lockingtoni.

The telson has its posterior angles accented, but not spinous. The eggs give rise to zoëa dare.
Localities:
Jamaica, Albatross.
Marco, Florida, 1 to 3 fathoms, H. Hemphill (Cat. No. 7000).
Marco, Florida, in sponges, H. Hemphill (Cat. No. 6970), type.
The species differs, then, from S. lockingtoni in many ways; the rostrum and stylocerite are shorter, the basal article of the antennule is longer, the carpocerite of different form and proportions, the maxilliped shorter, the large chela is spinous on the palmar border, the small cheliped is more slender, its carpus spinous and the second and third pairs are more slender.

One is induced to separate from S. apioceros a whole series of forms of different geographic orgin, probably constituting as many distinct species. They differ, nevertheless, very little from typical specimens and correspond well to what are called " petites espèces."

SYNALPHEUS APIOCEROS SANJOSEI, new subspecies.

This subspecies is reprosented only in the collecion of the Museum at Paris by some specimens (male and female) collected by

Fig. 10.-SYNALPIIEI'S APIOCEROS SANJOSEI. a. FRONTAL AND ANTENNAL REGION; K, SPINE OF LARGE CHELA; $K^{\prime \prime}$, CARPUS OF LARGE CHELIPED; h^{\prime}, SMALL CHELIPED OF FIRST PAIR; m, MEROPObITE OF THIRD PAIR.
M. Diguet. It is from San Jose Island, Lower California, and is as distinct from S. lockingtoni of California as is the preceding, from which it differs in the following details:

The rostrum is usually a little longer than the lateral spines; the stylocerite scarcely surpasses the basal article of the antennule; the lateral spine of the scaphocerite is notably shorter than the carpocerite; the carpus of the small cheliped is unarmed above. The small chela has these proportions: Fingers 1; total length 2.56; height 1.1; T. L.: H. $=2.34: 1$; it is thus more massive than in S. apioceros, where the last proportion is $2.95: 1$.

The meropodite of the third pair is 3.56 times as long as wide.

SYNALPHEUS APIOCEROS MAYAGUENSIS, new subspecies.

I have examined four specimens from Porto Rico belonging to this form. They are not, however, strictly alike. The most typical among them differ from S.

Fig. 11.-SiNalifieUs APIoceros mayaguensis. a, FRONTAL AND ANTENNAL REGION; K, SPINE OF LAKGE CHELA; m^{\prime}, DAC'TYL OF THIIDD PAIR; t, TELSON. apioceros in the following particulars:

Rostrum a little longer than the lateral spines; stylocerite attaining at least the middle of the median article of the antennule; scale of the scaphocerite only four times as long as wide; carpocerite surpassing the antemmule by $1 \frac{1}{2}$ times the length of the distal article, longer than the spine of the scaphocerite, and rery swollen at base (only 2.8 to 2.9 times as long as wide) ; the spine of the large chela continues in a straight line the anterior margin of the palm, which presents no swollen tubercle; the dactyl of the third pair is 3.8 times as long as wide and its ventral hook is more feeble than in S. apioceros; the posterior angles of the telson are right angles.

The other specimens are distinguished from the preceding by slight differences in the width of the antennal scale, in the more slender feet of the second and third pairs, and by the more marked posterior angles of the telson. It is probable that more abundant material would permit of separating them also from S. apioceros.

Type.-Cat. No. 24785, U.S.N.M. Mayagnez, on coral reef.

SYNALPHEUS APIOCEROS LEIOPES,

 new subspecies.Some females collected by M. Chaper (Paris Mnseum) differ from S. apioceros in the following points:

Fig. 12.-SYNALPHELS APIOCEROS LEIOPES. a, FRONTAL AND ANTENNAL REGION ; K, SPINE OF LARGE CHELA; m, PORTION OF THIRD FOOT.

The lateral spine of the scaphocerite always slightly exceeds the carpocerite; the feet of the third pair are more slender, the meropodites being t.t times longer than wide; the telson has its posterior angles right angles.

Venezuela, precise locality unknown. Type in Paris Musemm.

This form is more distinctly separated from S. apioceros than the preceding; it is also more abundantly represented. The specimens (4 males, 3 females) come from Desterro (Fritz Müller; Paris Museum).

The rostrum is separated from the lateral spines by wide intervals with simuons base; the basal article of the antemnule is only twice as long as the median article, and the antemnule scarcely four times as long as wide; the seale of the scaphocerite is from 4.1 to 4.3 times as long as wide, at least equal to the antennule, or longer; the lateral spine of the scaphocerite surpasses it very little, being shorter itself than the carpocerite; the maxilliped exceeds the antennule, and slightly the carpocerite; the spine of the large chela continues the anterior palmar border; the feet of the third pair are very slender, the meropodite being about 4.7 times as long as wide: the posterior angles of the telson are right angles.

All these forms, like S. apioceros, have zoëa larvæ. None possess large eggs. They themselves present slight individual rariations when

Fig. 13.--Synalpheus apioceros desterroensis. a, frontal and antennal region; K, side of large chela ; $h^{-\prime \prime}$, Carpus of large cheliped: k^{\prime}, small chelifed of first pair; m, meropodite of third palr. the specimens representing them are numerous, and it is probable that they will be isolated hereafter as distinct species. I have noticed in one of the specimens of sumjosei the absence of the spine on the anterior border of the carpus. This is an example of a type of " mutation" with which one frequently meets in the Synalpheids, and which is of very slight importance.

In the Indo-Pacific region the forms with long and slender carpocerite, analogous to the preceding, have as the type S. acanthitelsonis Coutiere, which differs from them almost solely by the rery spinous angles of the telson, and S. hastiticrassus Coutière, in which the superior angle of the basicerite is unarmed, and which consequently is closely allied to the species described hereafter.

SYNALPHEUS TOWNSENDI, new species.

The rostrum is $1 \frac{1}{2}$ times as long as the lateral teeth, reaching usually to the end of the proximal third of the median article of the

FIG. 14.-SYNALPIEES TOHNSENDI. a, FRONTAL AND ANTENNAL REGION: c, CARPOCERITE; K, LAIGF CHELA ; $K^{\prime \prime}$, CARPUS AND MEROPODITE OF LAIGGE CHELIPED ; $k^{\prime \prime}$, NMALL CHELIPED OF FIRST PAR: l, FOOT OF SECOND PAIR; m, FOUT OF THIRI PAHR; m^{\prime}, DACTYL OF THIRD PAIR ; t, TELSON.
antemule. On some specimens the frontal teeth are longer and more slender. The relative proportions of the articles of the anten-

Fig. 1̄. SyNalpheUs TOWNSENDI PRODUCTUS. \quad, FRONTAL AND ANTENNAL REGION. mule are: $2,1.3,1$. The stylocerite reaches almost the middle of the median article.

The basicerite bears no spine above, where it terminates in an obtnse angle; its lateral spine reaches to the distal third, sometimes even to the extremity of the basal antennular article; the antemal scale is 5.6 times longer than wide; its lateral spine is long and reaches beyond the extremity of the carpocerite. which is scarcely longer than the antenmule, and is 3.5 times as long as wide.
The large chela has the following relative dimensions: Fingers 1; total length 3.6.5 to 3.7 ; height 1.25 ; the anterior border of the palm bears a sharp spine; the carpus is very small, in the form of a coin; the supero-external margin of the meropodite (which is twice as long as wide) is very convex, terminated by a hooked spine.

The small chela is one-third as long as the large one; its relative dimensions are: Fingers 1 ; total length 2.5 ; height 0.8 or a little less. The meropodite is 3.1 times longer than wide; its upper margin ending in a sharp angle.

In the second pair, which is slender and elongate, the first article of the carpus measures 1 , the sum of the four following is 0.83 , and the chela 0.75 .

The relative dimensions of the third pair are: Meropodite 2.41 (five times longer than wide) ; carpus 1 ; propodite about 2.14 , the foot as a whole being long and slender, especially the propodite; the dactyl is also elongate, its rentral hook less thick and especially much shorter (about one-third) than the dorsal, with which it is parallel in direction.

The telson has sharp posterior an-

Fig. 16.-SYNALPIIEUS TOWNSENDI BREVISPINIS. a, FRONTAL AND ANTENNAL REGION: c, CARPOCERITE; K, LARGE CHELA; m^{\prime}, DACTYL OF THIRD PAIR; t, TELSON. gles, with the inner pair of spines very slender, three times longer than the outer pair; the convex posterior border has twelve plumose hairs.

Fig. 17.-SyNALPHEUS TOWNSENDI MEXICANUS. a, FRONTAL AND ANTENNAL REGION; m^{\prime}, DACTYL OF THIRD PAIR; \boldsymbol{t}, TELSON.

The eggs should give, in acordance with their size, zoëa larve.

This species represents on the American coasts S. hastilicrassus of the Laccadives and Maldives. The latter is distinguished by the large cheliped, in which neither the palm nor the meropodite is spinous, by the shorter dactyls of the thoracic feet, in which the ventral hook is the more important, by the telson having more pronounced angles, and the inner spines shorter than in S. townsendi. The carpocerite is also more swollen than in the last-named species.
S. townsendi shows some interesting variations. In a male specimen from Albatross Station No. 2406 (form productus) the rostrum and the frontal spines are very elongate, as is also the lateral spine of the scaphocerite. This "oxyceros" form (very frequent in Synalpheus), is seen likewise in the Maldivian species, S. hastilicrassus, at least as to the elongation of the rostrum.

This species is chiefly Atlantic, being known from the Bermudas, from Florida, the Bahamas, Cuba, and Porto Rico. It extends as far as Brazil, and, strange as it may seem, the Allatross collected it at the Hawaiian Islands at Station No. 3969. The species is met with, however, on the Pacific coast of America, represented by some specimens collected by M. Diguet (Paris Museum), which differ from those just described by the large chela, which has the palm obtuse, and the telson, in which the posterior angles are altogether right angles and the inner spines are shorter (form Urevispinis).

Other specimens from the same region, collected by the Illatross (form mexicanus) have the basicerite slightly acute on the upper border; the frontal projections are short, the rostrum shorter than the basal article of the antenmule; the ventral hook of the dactyls is a little larger, and the posterior angles of the telson are sharper than in typical specimens. These are rery interesting differences, because they are the same which serve to separate the two species of the Maldives, S. hastilicrassus and S. acanthitelsonis, but here the characters of the basicerite and of the telson are much more marked.

Named for Mr. Charles Haskins Townsend, formerly naturalist of the Alluatross.

Localities:
North Carolina, 15 to 16 fathoms, Albatross Station Nos. 2280 and 26(1).
Florida: Key W'est (Union University collection) ; Anclote; Straits of Florida, 26 fathoms, Illuatross Station No. 2640 ; west coast, 12.5 to 28 fathoms, Grampus Stations Nos. 5094 and 5100 and Fish IIawk Stations Nos. 7106,7123 and 7124.
Gulf of Mexico, 24 to 32 fathoms, . Ilbutross Stations Nos. 2369, 2372,2373 (type), 2387, 2389, 2390, 2405, 2406 (type of townsendi productus), 2407, 2409, 2410, 2411, 2412, 2414.
Yucatan, off Cape Catoche, 24 to 27 fathoms, Albatross Stations Nos. 2362, 2365, 2366.
St. Thomas, Allatross, and Fish Hawk Stations Nos. 6079, 6080, in 20 to 23 fathoms.
Porto Rico, Mayaguez Harbor, 4 to 6 fathoms, Fish Haw\% Station No. 6065 .
Culebra, 15 to 15.25 fathoms, Fish II awk Stations Nos. 6087 and 6093.

Vieques, 15 to 16 fathoms, Fish IIawh Stations Nos. 6091 and 6092.

Bermuda, G. Brown Goode.

Localities-Continued:
Brazil, Bahia, Hartt Expedition, Station No. 173.
Hawaiian Islands, French Frigate Shoal, 15 to 16 fathoms, Albatross Station No. 3969.
Southern part of Culf of California, $9 \frac{1}{2}$ fathoms (type of form mexicanus), Ilbutross Station No. $282(6$.
Lower California (form Zrevispinis), M. Diguet (Paris Muselum).
Type of S. tounsendi.-Cat. No. 38392, U.S.N.M.
Type of S. townsendi productus.-Cat. No. 9798, U.S.N.M.
Type of S. townsendi mexicamus.-Cat. No. 38393, U.S.N.M.
S. townsendi is particularly close to S. paraneomeris Coutière, a form with basicerite marmed above, which also presents variations in the armature of that article, as does an "oxyceros" form. The difference consists principally in the supernumerary ventral prominence of the dactyls, absent in S. townsendi, but very characteristic of the Neoneris gronp, where a great number of species possess it. S. paraneomeris is one of the most widely distributed species of the Indo-Pacific region.

NEOMERIS Group.

SYNALPHEUS FRITZMÜLLERI, new species.
Rostrum slender, quite distinct from the lateral spines, the margins nearly parallel for half their length; lateral spines with sharp points, generally a little shorter than the rostrum, reaching to the middle of the basal antennular article.

The articles of the antennule are in the proportion: 1.5, 1.1, 1 , beginning at the base; the external flagellum is bifurcate beginning at the eighth article; the stylocerite equals one-half of the median antennular article.

The basicerite of the antenme bears on the upper side a strong spine, laterally a longer spine, a little shorter than the stylocerite; the anteunular scale is narrow (6.6 times longer than wide), its sharp lateral spine reaching the extremity of the carpocerite, which surpasses the antennule by about half the distal article and is a little swollen and only three times longer than wide.

The external maxillipeds reach forward to the bifurcation of the external antennular flagellum.

The relative proportions of the large chela are: Fingers 1; total length 3.15 to 3.3 ; height 1.25 ; the anterior margin of the palm bears an obtuse prominence; the meropodite is 2.3 times longer than wide, its inferior margin terminating in a strong triangular point.

The proportion of the small chela to the large one is as 1 to 2.5 . Its relative dimensions are: Fingers 1 ; total length 2.2 ; height 0.72 ; its meropodite also ends in a strong triangular lobe.

In the second pair the first article of the carpus is approximately equal to the four others taken together; the chela is a little shorter; the meropodite measures about 0.8 of the length of the carpus.

The relative proportions of the third pair are: Meropodite 2.33; carpus 1; propodite 2 , or a little less; the meropodite is 3.5 times longer than wide, this proportion diminishing in adult females or in males of small size to 3.7 ; it reaches even 4 in a perfectly typical

FIG. 18.—SYNALFHEUS FRITZMÖLIERI, I, PRONTAL AND ANTENNAL REGION゙; c, CARPOCERITE; K^{\prime}, LARGE CHELA; $K^{\prime \prime}$, CARPI'S AND MEROPODITE OF LIRGE ('HELIPED; $h^{\prime \prime}$. SMALL CHELIPED OF FIRST PAIR; l, FOOT OF SECOND FAIR; m, FUOT UF THIRD PAIR; m^{\prime}, DACTYL OF THIRD PAIR; $m^{\prime \prime}$, REVERSE OF SAME; t, TELSON.
female from Cape Florida ; the two hooks of the dactyl are divergent, the ventral nearly twice as thick as the dorsal, with the anterior margin more convex ; it does not directly continue the inferior margin of the dactyl, rejoining it by a concave curve of short radius in such a manner as to form a third obtuse prominence.

The telson has its posterior angles obtuse, its posterior margin bears twenty plumose hairs between the two pairs of habitual spines.

The eggs are of small size, and the larve are zoër.
The typical specimens are from Florida, some of them living in sponges; the species is also met with in Porto Rico and in Jamaica. In these three regions the typical examples predominate, but the
species also ocenrs in the "oxyceros" form (subspecies elongatus), the lateral spine of the scaphocerite greatly exceeding the carpocerite of the antenna, and the rostrum being frequently longer than the lateral spines. The subspecies clongatus seems to be almost the only one in Venezuela and Brazil. Some specimens received from M. Chaper (Veneznela), others received from Fritz Müller from Desterro, and a small specimen from Bahia (R. Rathbun, Itartt Explorations) are without exception clongutus. Aside from their longer antemal spine, these specimens have the carpocerite less thick (3.3 to 3.4 times longer than wide), and the feet of the third pair more slender, the meropodite being 3.8 to t times longer than wide; but this last character varies with the size, and also with the sex, in the typical specimens within a rather wide range. With the material at my disposal I can not form a conclusion as to the advisability of the specifie separation of this clongatus form.

The species is also found in Lower California, from which locality I have been able to study a single male specimen collected by M. Diguet, which does not differ from the Florida speci-

a
Fig. 19.-Synalpheus FRITZMÜLLERI ELONGATUS. a, FRONTAL AND ANTENNAL REGION. mens in regard to the antenne; the feet of the third pair are slender, the meropodite being four times as long as wide; but I find the same figures among the small typical males of Florida, of corresponding size, so that I can not separate this specimen from Lower California, even as a distinct "race."
Named for the naturalist, Dr. Fritz Müller.
Localities:
Typical specimens-
Cape Florida, Edward Palmer, 1 specimen.
Key West, Union University collection, 2 specimens.
Key West, H. Hemphill, 2 specimens.
Marco, Florida. H. Hemphill, 10 specimens, male and female, types.
Florida, west coast, 28 fathoms, Fish Hawk Station No. 7123, 1 specimen.
St. Thomas, Albatross, 1 specimen.
Mayaguez, Porto Rico, Fish Hawl,, 4 specimens.
Lower California, M. Diguet (Paris Museum), 1 specimen. Subspecies elongatus-

South Carolina, Mouth of Bull Creek, Fish. Hawk, 1 specimen, type.
Florida, Eastern Dry Rock, Edward Palmer, 1 specimen.

Localities-Continued:
Subspecies elongatus-Continued-
Florida, St. Martins Reef, Lient. J. F. Moser, U. S. N., 1 specimen.
Florida, II. Hemphill, 1 specimen.
Florida, Key West, Union University collection. 1 specimen.
Jamaica, Albutross, 3 specimens.
Venezuela, M. Chaper, Paris Museum.
Bahia, Hartt Explorations, R. Rathbun, 1 specimen.
Desterro, Fritz Mïller, Paris Museum.
Type of S. fritzmülleri.-Cat. No. 6970, U.S.N.M.
Type of S. fritzmülleri clongatus.-Cat. No. 38394, U.S.N.M.

SYNALPHEUS HEMPHILLI, new species.

The species is very like the precerling, the differences being as follows:
The rostrum is always much longer (about twice) than the lateral spises: the feet of the third pair are a little shorter and thicker, their relative proportions

Fig. 20.-SiNALPIEIS HEMPHILLI. m, FOOT OF TILIRD PAIR, BERMEDAS ; $m^{\prime \prime}$, EXTREMITY OF FOOT OF TIIIRD pair, Albatross Station No. 2409. being, carpus 1: meropodite 2.5 ; propodite about 2 ; the meropodite is 3.5 times longer than wide; on the dactyl the ventral hook is perpendicular to the lower border and its margins form a double curve, convex, then a little concare to the point; behind, the very marked third prominence forms a right angle at the summit, projecting a little in a spine.

It is therefore almost solely the form of the hook which distinguishes the two species, for the chela of the first pair, the telson, and the carpocerite are quite alike; this character of the dactyls is not only very marked, but perfectly constant in presence and in degree.

There is in this species, as in the preceding, an "oxyceros" form, in which the antennal scale equals the antemule, its lateral spine much exceeding the carpocerite. The resemblance of these two forms to S. nilandensis and S. nilandensis oxyceros Coutière, of the Maldives, is extremely close. The differentiation from S. nilandensis, in which the supraorbital spines are equal to the rostrum, the rentral hook of the dactyl is very strong, the supernumerary hook very dis-
tinct and spinous, is relatively easy; but in S. mitamdensis oxyceros these last differences have entirely disappeared, the only ones persisting being the greater length of the supraorbital spines, that of the lateral spine of the basicerite, and lastly the presence of a row of five spines on the meropodite.

A large female specimen from the Bermudas of S. hemphilli longicornis is particularly interesting in this regard; the meropodite of the left foot of the third pair bears a well teveloped spine; the rest of the series is wanting; the opposite member is quite unarmed, but the suggestion arising from this circumstance is none the less instructive, as it shows to what degree the parallelism between the Indo-Pacific and the American forms may be carried. The "oxyceros" forms of the species S. nilandensis and S. hemphilli apparently represent the first evidences of divergence of certain species eriginally common to two regions; judging by the much greater number of species in the IndoPacific region, and also from the fact that there only are found the forms with spinulous meropodites, one might infer that that region was the center of dispersion of the group.
S. paraneomeris Coutière possesses the same form of hook as S. fritzmulleri, from which it is

lig. 21.-SINALPIIEUS HEMPHILLI LONGICORNIS. a, FRONTAL AND ANTENNAL REGION ; m^{\prime}, EXTREMITYY OF THIRD FOOT. most readily separated by having the basicerite not spinous above; on the other hand, S. paraneomeris is no less closely related to S. tounsendi Contière, the basicerite of which is unarmed above, but the dactyls of which have no ventral supernumerary prominence; so that the two groups, the Neomeris group and the Paulsoni group, have in these three species a very evident point of approximation.

Named for Mr. Henry Hemphill, who has added largely to the Alpheidæ in the U. S. National Museum.
Localities:
West coast of Florida, 21 to 28 fathoms: Albatross Station No. 2409,2 specimens, type : Fish Hawk Station No. 7123,1 specimen; Fish IIawh Station No. 712t, 1 specimen (type of longicomis.)
Bermudas, G. B. Goode, 2 specimens (longicornis.)
Type of S. hemphilli.-Cat. No. 9817, U.S.N.M.
Type of S. hemphilli longicornis.-Cat. No. 38395, U.S.N.M.

SYNALPHEUS NOBILII, new species.

This species is represented only by a single male specimen; I do not hesitate, however, to consider it distinct from S. fritzmülleri. The differences which separate the two species (comparing two specimens of the same sex and of the same size) are the following:

The carpus of the small chela is more massive, its width exceeding that of the palm (proportion 1.12 instead of 0.9 , as in S. fritzmülleri).

The second pair is shorter and thicker, the carpus being six, instead of eight, times as long as wide. Furthermore, the first segment of the carpus is shorter than the sum of the four following.

Fig. 22.-SYNALPHEUS NOBILII. a, FRONTAL AND ANTENNAL REGION; c, CARPOCERITE; K, LARGE CHELA; k ', SMALL CHELIPED OF FIRST PAIR; 1 , FOOT OF SECOND PAIR; m, FOOT OF THIRD PAIR; m^{\prime}. DACTYL OF TIIIRD PAIR.

The third pair is much more massive: the relative proportions being; Carpus 1; propodite 1.8; meropodite 2 (instead of $1,2,2.33$); the meropodite is only 2.8 times as long as wide, instead of 4 times, as in S. fritzmïlleri.

I find no other difference, either in the carpocerite, in the dactyl of the third pair, or in the telson.

Named for Dr. Joseph Nobili, the carcinologist.
Locality.-St. Helena, Ecuador, one male specimen, 25 mm . long (M. Festa; Paris Museum).

I would remind the reader that S. fritzmulleri is represented in the Paris Museum by a specimen from Lower California collected by
M. Diguet, which is absolutely typical and which it is impossible to separate as a distinct "race," a rare circumstance among the Synalpheids.

On the other hand, S. notilii is very easily distinguished from S. sanlucusi, in which all the appendages, namely, the antennule, the spines of the basicerite and of the anterior margin, the large chela, the feet of the second pair, and the feet and even the dactyls of the third pair are much shorter and more massive.

SYNALPHEUS SANLUCASI, new species.

Species of each of the specific groups composing the genera Alpheus and Synalpheus are often parallel to species of closely allied

Fig. 23.-Synalpheus sanlucasi. a, frontal and antennal region; K, large chela; 1 , foot of second pair ; m, foot of third pair ; m ', dactyl of third pair.
groups in the characters upon which the separation of specific forms is based; as, for example, in the presence or absence of the superior spine of the basicerite or of the antennal scale, the slender or swollen form of the carpocerite, the spinose or unarmed palm of the large chela, and slenderness or stoutness of the thoracic feet. When one of these characters has been recognized in the species of a given group one can almost prophesy the existence of another species provided with the opposite character. This is, moreover, a well-known fact in all genera which are rather numerous in species.

Thus, S. santucasi, a form very close to S. fritzmülleri, differs from it in the shortness and more massive form of all its appendages.

The frontal teeth are stronger, the rostrum, especially, being wider at the base; the articles of the antennule are approximately equal, and the proportion of total length to the width is only 4.25 instead of 5 , as in S. fritzmïlleri.

The basicerite has its superior spine placed higher than in the preceding species, so that it reaches the extremity of the basal antenmular article, and makes the lateral spine short and stout. Although the scale of the scaphocerite is as long as in S. fritzmülleri, the proportion of its length to its width is only 6 instead of 6.6 , on account of its stoutness. The carpocerite is of the same form as in the preceding species, and also exceeds the antennule.

The large chela has, for its relative dimensions, fingers 1 , total length 2.88 , height 1.33 ; the small chela is lacking in the type.

In the second pair the carpus is only 5.6 times longer than wide, instead of 8 , as in S. fritzmulleri; the relative proportions are: First article of the carpus 1 : sum of the four following ones 1.6 ; terminal chela 1.72 , very different, therefore, from the proportions found in S. fritzmülleri; the meropodite measures 0.7 of the length of the carpus.

The proportions of the third pair are: Meropodite 1.65 ; carpus 1; propodite 1.56 ; the meropodite is only 2.53 times longer than wide.

The dactyl has practically the same form as in S. fritzmülleri, the differences being that the ventral hook is wider at the base, and the entire appendage is shorter than in the preceding species.

The telson has not suffered the same diminution as the appendages, the proportions of its length to its proximal and distal ends being respectively 1.4 and 2.33 , instead of 1.15 and 2 , as in S. fritzmülleri, the telson of which species is, therefore, wider and shorter.

The eggs are of the same size as are those of the preceding species.
S. santucasi, readily distinguishable from the two American forms S. fritzmülleri and S. hemphilli, is much more closely allied to a species which I collected at Djibouti, and to which I give the name S. heroni, the species occurring on the reefs of Héron. S. heroni is distinguished by the following points: The lateral spine of the basicerite slightly exceeds the extremity of the median antennular article, and the antennal scale is more reduced, the proportion of its dimensions being about 7.3 ; on the other hand, its lateral spine, as in the "oxyceros" forms of many species, considerably exceeds the carpocerite.

The proportions of the large chela are: Fingers 1; length 3.2 ; height 1.32 , it being, therefore, less massive than that of S. sanlucasi.

The small chela has these proportions: Fingers 1 ; total length 2.6 ; height 1.08 ; it is 2.45 times smaller than the large chela; the meropodite is a little more than twice as long as wide. Compared to that of S. fritzmülleri, the small chela appears much stouter, and it would probably be the same with S. santucasi.

In the second pair, the first article of the carpus, the sum of the four following ones, and the terminal chela are practically of the same length; the carpus is 6.5 times longer than wide.

Fig. 24.-. SyNALPHEUS HERONI. $\quad \boldsymbol{f}$, FRONTAL AND ANTENNA REGION; K, LARGE CHELA; k^{\prime}, SMALL CIIELIPED OF FIRST PAIR; l, FOOT OF SECOND PAIR; m, FOOT OF THIRD PAIR.

The proportions of the third pair are: Meropodite 2; carpus 1; propodite 1.6 ; the meropodite is 2.5 to 2.6 times longer than wide, and is therefore longer and thicker than in the species from Lower California.

Cape St. Lucas, Lower California; John Xantus; type, Cat. No. 6355, U.S.N.M.

BREVICARPUS Group.
 SYNALPHEUS MINUS (Say).

Alpheus minus Say, Journ. Aced. Nat. Sci. Phila., I, 1818, p. 245.
Teeth of the frontal border in the form of an equilateral triangle, the rostral tooth usually a little wider at the base, and sometimes very slightly longer, than the lateral teeth.

The proportions of the antennular articles are: 2, 1.5, 1 ; the renaion of the total length of the stalk of the antennule to its width is 4.8 to 5 ; the stylocerite reaches the distal third of the median article; the external flagellum bifurcates only at the tenth article.

Basicerite of the antennæ distinctly spinous above, the spine always longer than wide at the base; the lateral spine reaches to the extremity of the basal article of the antemule.

Fig. 25.-SYNalilieus mines. a, frontal and antennal region, typical; a^{\prime}, frontal AND ANTENNAL REGION, SPECIMEN FROM BERMUDAS WITH BASICERITE SPINOUS ABOVE; $a d$, FRONTAL AND ANTENNAL REGION, SPECLMEN FROM STATION NO. 7123 WITH CARPOCERITE MORE SLENDER ; c, CARPOCERITE, TYPICAL; c^{\prime}, CARFOCERITE, NALE, STATION NO. 7123 ; cc, CARPOCERITE, FEMALE, STATION NO. $7123 ; ~ r$, EGG; i, OUTER MAXILLIPED; K, LARGE CIIELA, TYPICAL; k^{\prime}, SMALL CHELIPED OF FIRST PAIR, S. BREVICARIUS ; $k k^{\prime}$, SMALL CIELIPED OF FIRST PAIR, TYPICAL; $k k k^{\prime}$, SMALL CIIELIPED OF FIRST PAIR, TYPICAL (ANOTIER SPECIMEN) ; l, FOOT OF SECOND PAIR; m, FOOT OF TIILRD PAIR, TYPICAL; $m m$, FOOT OF TIILRD PAIR, S. BREYICARPUS ; $m m m$, FOOT OF THIRD PAIR, STATION NO. 7123 ; m^{\prime}, DACTYL OF THIRD PAIR, NOT TYPICAL; $m m^{\prime}$, DACTYL OF THIRD PAIR, TYPICAL; t, TELSON, S. BREVICARPUS; t^{\prime}, TELSON, TYPICAL.

The antennal scale is narrow (proportion of length to width 7 , and up to 8.5), its inner border making a very obtuse angle and not a regular curve; the lateral spine is a little longer than the peduncle of
the antemmule, shorter than the carpocerite, which last is a little depressed, the proportion of its length to its width being about 3.7 ; it exceeds the antennule by half or even two-thirds of the distal article.

The large chela is regularly oroid; its measurements, taken along the infero-external side, are: Fingers 1, total length 3.5; height 1.35; there is on the supero-internal side, on the anterior margin of the palm, near the articulation of the finger, a strong, sharp, and rather slender spine.

The small chela is in the proportion of about 2.7 to the preceding; its relative dimensions are: Fingers 1; total length 2.25; height 0.8 ; the fingers terminate in a simple point ; the carpus is short, scarcely a fourth of the entire cheliped; the meropodite is 2.5 times longer than wide, its superior margin terminated by a trihedral prominence, not spinous.

In the second pair the proportion between the length and width of the carpus is about 9.5 ; the meropodite is only 0.75 of the length of the carpus.

The proportions of the third pair of feet are: Meropodite 2.2 ; carpus 1 ; propodite 1.6 to 1.7; the proportion between the length and the width of the meropodite is approximately 4 , often a little less; the dactyl is a little emrved, long, its hooks are almost parallel, the dorsal nearly twice as long as the ventral.

Fig. 26.-SyNalpheus ainus bahiensis. a, FRONTAL AND ANTENNAL REGION; \boldsymbol{k}^{\prime}, SMALL CHELIPED OF FIRST PAIR; m^{\prime}, DACTYL OF THIRD PAIR.

The length of the telson equals 1.06 times the width at the base, and $1.8 \pm$ times its distal margin, which is regularly convex and bears about twenty plumose hairs and two pairs of feeble spines.
The eggs are of small size (0.6 mm . in the nauplius stage, subse-quently up to 1 mm .), and give rise to zoëæ.
The length of the species does not exceed 2.5 mm .
The typical specimens come from the region of the Bahamas and Florida, but the species extends to the Bermudas and southward to Brazil: some specimens from this last locality differ from the types and may be separated as form bahiensis; the basicerite of the antennæ has its lateral spine very slender, its superior spine long and strong, the lateral spine of the scaphocerite also slender, being as long as the carpocerite; the small chela is more swollen than in the typical specimens, the proportions being, fingers 1 ; total length 2.8 ; height

1 to 1.09 ; the proportion between the length and the width of the meropodite is 2.1 instead of 2.5 ; the dactyls, in the third pair especially, have their two hooks almost equally strong and long.

The strong superior spine of the basicerite, and also the greater ${ }^{2}$ thickness of the small chela, are found again, less marked, in some specimens from the Bermudas and from Florida, which it would be hardly advisable to separate as a distinct form. A specimen from Sarasota Bay, Florida, has an abnormal small claw, approximating the large one in its proportions; the fingers measure only one-third of the total length, and the anterior border is spinous. This tendency to the reestablishment of the symmetry of the two claws is not very rare in the Nlpheidx; and, although leading to the same results, it is diametrically opposed to

FIG. 27.-SYNALPHEI'S MINUS ANTILLENSIS. a, FRONTAL AND ANTENNAL REGION; k, LARGE C'HELA; k^{\prime}, SMALL CHELIPED OF FIRST PAIR; m^{\prime}, DACTYL GF TIIIRD PAIR. the cases of hypotypic regeneration, of which also examples are known.

Other very interesting specimens differ markedly from the types by the width of the antennal scale, only 7.3 times longer than wide, recalling by its form that of S. brevicarpus. Other characters of the species are in these specimens weakened in the same way; for example, the carpocerite is a little less swollen, the proportion of its length to its width (3.7) declining to 4 in the male; of the members of the second pair the carpus is 10 times longer than wide. On the other hand, the dorsally strongly spinons basicerite, the thick meropodite of the third pair, the telson widened at its distal end, and the form of the chela of the first pair, permit the determination of these examples as S. minus. They indicate in what way the variation giving rise to the species brevicarpus is accomplished.

Among the other varieties of S. minus, it seems to me possible to separate a form antillensis. The specimens which are referred to this form come mainly from Porto Rico and St. Thomas. They differ from the types in the frontal teeth, which are long and narrow, especially the rostrum, and in the antennule, which is only 4.2 to 4.3
times as long as wide; the basicerite is not more spinons above than in the typical specimens; the carpocerite is longer, surpassing the antemules by the length of the distal article, and, especially, more oroid (proportion 3.2 or even 3.15) ; the antennal scale is also a little wider than in the types; the small chela, as in the form bahiensis, is more swollen than in the types; it has, as its proportions, fingers 1 ; total length 2.38 ; height 0.9 ; there are no differences either in the form of the large chela, of the members of the second and third pairs, or in the telson.

In some specimens, especially among those from St. Thomas, the dactyls of the thind pair are very slender, with the superior margin only slightly convex, and the superior hook strong. I have not a sufficient series to enable me to judge of the importance of this character.

The specimens of the form antillensis are all of small size, 15 mm . in length at the most. The eggs are as in the typical specimens.

Localities:
South Carolina, 15 miles sontheast of Charleston, in fragment of madrepore, R. E. Earll.
Florida:
Cape Florida, Edward Palmer.
Elliotts Key, lat. $26^{\circ} 33^{\prime}$ N., long. $83^{\circ} 10^{\prime}$ W., 28 fathoms,
Fish Hawl: Station No. 7123 (specimen approaching brevicarpus).
Harbor Key.
Salt Fond Key, Stock Island.
Eastern Dry Rock.
Key West, Union University collection.
Dry Tortugas.
Florida Bay, Edward Palmer.
Two miles west of Cape Romano, 15 to 18 feet, Lient. J. F. Moser, U. S. N.
Marco, H. Hemphill.
Sarasota Bay (specimen with small chela anomalous), Union University collection.
Anclote (specimen approaching brevicarpus), Thomas Low.
Florida Banks, lat. $28^{\circ} 56^{\prime}$ N., long. $28^{\circ} 15^{\prime}$ W., 12 feet, Lient. J. F. Moser, U. S. N.
St. Martins Reef, Lieut. J. F. Moser, U. S. N.
Bahamas:
Andros Island, in sponges, F. Stearns collection.
Green Cay, Geographic Society of Baltimore.
St. Thomas, 20 to 23 fathoms, Fish Hawk Station No. 6079 (type of form antillensis),

> Localities-Continued:
> Porto Rico (form antillensis) :
> Playa de Ponce, Fish Hawh.
> Humacao, $9 \frac{1}{2}$ fathoms, Fish Hawk Station No. 6099.

Bermudas (specimen with basicerite very spinous), G. B. Goode.
Brazil, Plataforma, Bahia (type of form bahiensis), R. Rathbun, Hartt Explorations.
Type of S. minus bahiensis.-Cat. No. 38396, U.S.N.M. Type of S. mimes antillensis.-Cat. No. 38397, U.S.N.M.

SYNALPHEUS DIGUETI, new species.

This species represents the Brevicarpus group on the coast of Lower California, where it has not previously been found. It is, consequently, a very important extension of the geographic distribution of this group, which thereby ceases to be an exception from the general rule. Just as the Lavmanus group possesses at least one Indo-Pacific species, it will also be found that the Brevicarpes group has met in that region of the globe conditions inducing specific differentiation.
S. digueti is very near S. minns (Say) ; the differentiation is difficult except between adult specimens, and the more mature, the easier is the determination. The characters of the males are more decided than are those of the females. In the males the differences between S. digueti and S. minus are the following: (1) The antennule is 6 times longer than wide instead of 5 times, as in the males of corresponding size of S. minus; (2) the carpocerite is 3.5 times longer than wide instead of 3.7 times, and the lateral spine of the scaphocerite is a little shorter than the antennule; (3) the meropodite of the third pair of feet is 3.5 times longer than wide instead of 3.75 times.

In the females the antennule is not more than i. 8 times as long as wide, and the spine of the scaphocerite slightly exceeds the antemnule, so that the tangible differences from the females of S. minus become almost none. However, the carpocerite is somewhat thicker, 3.54 to 3.58 times longer than wide, while this proportion reaches 3.7 to 3.75 in the females of S. minus; there is also a very slight difference in the thickness of the meropodite of the third pair, where the proportions are nearly 3.5 in S. minus and 3.3 in S. digneti.

There is also in both sexes a slight difference in the meropodite of the small cheliped; this is at the most as wide as the palm, and generally a little narrower in S. minus (proportion 0.92 to 0.96); in S. digueti, on the other hand, it is wider (proportion 1.1 to 1.13).

The specimens which have just been considered do not exceed 25 mm . in length; in one large female measuring 30 mm . (also collected by M. Diguet) the characters are much more clearly indicated,
the antemules especially, markedly slemder, being 6 times longer than wide, as in the male; in the largest females of s. mimus, which are of equal size, this proportion never exceeds s) the carpocerite is only 3.35 times longer than wide instead of 3.7 times, as in the largest female of s. mimus.

This specimen presents, moreover, a very peculiar form of rostrum, the point being shorter, and, particularly, much narrower than the lateral teeth. I have noticed in a male a tendency toward this shape. The lateral spines are very slightly longer than the rostrum, forming

FIG. 28.-SYNALPHEUS DIGUETI AND S. DIGUETI ECUADORENSIS. a, FRONTAL AND ANTENNAL REGION OF S. DIGUETI, MALE OF MEDIUM SIZE; a^{\prime}, FRONTAL AND ANTENNAL REGIUN OF S. DIGUETI, FEMALE OF MEDIUA SIZE ; $a^{\prime \prime}$, FRONTAL AND ANTENNAL REGION OF S. DIGUETI, FEMALE OF LARGE SIZE; $a G$, FRONTAL AND ANTENNAL REGION OF S. DIGUETI ECUADORENSIS, MALE; c, CARPOCERITE OF S. DIGLETI, MALE; c^{\prime}, CARPOCERITE DF S. DIGUETI, FEMALE; ce, CARPOCERITE OF S. DIGUETI ECLADORENSIS; k^{\prime}, SMALL CIIELIPED OF FIRST PAIR UF S. DIGUETI; m, MEROPODITE OF TIIIRD PAIR OF S. DIGUETI.
a prominence exceeding it in height, so that the rostrum seems to be situated on a lower plane.

The eggs are of the same size as those of S. minus and also give rise to zoëæ.

Twelve specimens, male and female, from Lower California (M. Diguet. Paris Museum).

One very interesting form of this species is represented by two specimens, male and female. from Ecuador. The differences between the

Proc. N. M. rol. axxvi-0:-4
male and female are very slight ; the frontal teeth are very short, and the rostrum a little shorter and weaker than the lateral teeth, especially in the male. In both cases the antennule is 5.5 times as long as wide; the lateral spine of the scaphocerite is as long as the antenmle; the carpocerite exceeds it very little in the female, a little more in the male, and is very much swollen, only 3.5 times as long as wide in the male, or 3.3 times in the female; the meropodite of the third pair is 3.25 times as long as wide in both specimens.

This form of S. digucti (which might be distinguished under the name of ecuadorensis) makes the distribution of the Brevicarpus group much like that of the Paulsone group, which has representatives in Lower California and Chile, in Brazil and Florida, as well as in the West Indies. I have shown in the introduction to this paper what interest attaches to the presence or absence of the species of the Brevicarpers group elsewhere than on the American coasts, because of their close relations of kinship with the species of the Paulsoni group.

St. Helena, Ecuador; M. Festa; :2 specimens, male and female (Paris Museum).
Named for M. Diguet.

SYNALPHEUS BREVICARPUS (Herrick).

Alpheus sauleyi var. brevicarpus Herrick, Mem. Nat. Acad. Sci., V, 1891, 1. 383.

The species is also very like S. minus, from which it is distinguished by the following characters:
The proportions of the antemular articles are 1.8, 1.7, 1; the proportion of the length to the width of the antennule is at least 5.5.

The basicerite is not spinous above; it bears an angular prominence, at most as long as wide at base.

The scaphocerite has a very wide scale, with the border regularly curved within; it is from 5.5 to 6.4 times longer than wide; the hairs which border it are at least twice as long as those in S. mimes; but, on the other hand, the lateral spine, shorter and more obtuse, does not reach the end of the antennular stalk.

The carpocerite is sensibly 4 times as long as wide and more cylindrical than in S. minns.
The large chela has the following relative dimensions: Fingers 1; total length 3 : height about 1.15 , varying to 1.2 . In the large specimens the movable finger presents a second obtuse prominence between the point and the molar processes of the lower margin ; the palm is less regularly ovoid than in S. minus, and more tapering on the proximal side.

The small chela measures a third of the preceding: the relative dimensions are: Fingers 1; total length 2.35 to 2.4 ; height 0.65 to
$0 . i$ (a little narrower therefore than in s. mimus). The meropodite is similar in the two species (proportion 2.5).

In the second pair the proportion of the length to the width of the carpus is about $12: 1$; furthermore, the meropodite is 0.5 . of the lengeth of the carpus.

The proportions of the feet of the third pair are the same ass in S. mimus sale for the meropoditer, in which the proportion between the length and the width reaches 4.25 .

The length of the telson reaches from 1.06 to 1.15 times its large base, always more than wice (2.0 .5 to 2.23 times) its small base, the article being visibly narrower than in S. minus.

Fig. 20.-Synalpilets brevicarpus. a, frontal and antennal reglon; c, cardocerite; c e egG: K, harge cilela; k, small cheliped of first pair, male: k ', salall cifeliped of first pair, male, s. minus (for comparison) ; l, foot of second pair; m, foot of Third pair ; m ', dactil of third pair ; t, telson ; t ', telson, s. minus (fur comparisun).

The eggs are of large size and give rise to mysis larve provided with all their appendages, comprising the chelipeds of the first pair, which are already very unequal, and those of the second pair, in which the carpus is already segmented.

The size may reach 36 or even 38 mm . (female).
There occurs a remarkable varicty of this species represented by some specimens from Key West and also from Porto Rico (guerini). The frontal teeth are long, especially the rostrm, which last slightly surpasses the lateral teeth and is also wider at the base; the margins are strongly concave outside instead of being straight, as, in typical specimens; the basicerite of the antema is a little more spinous
above; the scaphocerite has its lateral spine more elongate, so that it attains the length of the carpocerite.

In these characters the specimens recall the form antillensis of S. minus, but they are perfectly distinct from it; it is as if the two species, while themselves closely allied, had effected in the same way parallel variations. While in the variety antillensis of S. minus the carpocerite is ovoid, the feet of the second and third pairs are strong, and the telson is wide: in the variety gnerini of S. brevicarpus the carpocerite is slender and cylindrical (proportion $1: 4$ and even $1: 4.4$), the carpus of the second pair is 12 times as long as wide, the meropodite of the third pair is 4.5 to 4.7 times as long as wide, and the telson is narrow, as in the

Fifi. 30.-SyNalpiheus brevicarpus geterini. u, frontal and antenfal region ; u^{\prime}, front ; c, carpocerite. typical specimens of the species.

The chele of the first pair are those of S. minus. The proportions for the small chela are: Fingers 1; total length 2.26 : height 0.75 .

I have been able to see the eggs on only one female of very small size, and infested with a Bopyrid; they are of the same volume as those of S. mimus. According to the appearance of the mature ovary of another female, I think that it is their normal size, and that this is besides another character which distinguishes these specimens from S. brevicarpus, at the same time approaching S. minus.

I give to the variety the name of gurrini because it perhaps corresponds to . 1 pheus sauleyi of Guérin. In the figure by that author ${ }^{a}$ the rostrom is longer than the lateral spines and the basicerite appears to be spinous above. It is proper to note that in the nomenclature the trinomial appellation does not imply that this form is derived from S. brevicarpus; the contrary would be as plausible; the forms with large eggs, always rare, may be considered as derived from the species in which the eggs have the usual small size. Localities:

Florida:
Elliotts Key, J. E. Benedict.
Harbor Key, Union University collection.
Key West, H. Hemphill, Bean and King, Eliot, Union 'University collection.

[^3]Localities-Continned:
Florida-Comtinued:
Key West (form guerimi), Union University collection.
Dry Tortugas, Eastern Dry Rock, Salt Pond Key, and Florida Bay, Edward Palmer.
Bahamas:
Andros Island (some coming from sponges), F. Stearns collection.
Green Cay, B. A. Bean.
Porto Rico:
Off Humacao, $9 \frac{1}{2}$ fathoms, Fish Hawk Station No. 6099 (type of form guerini).
Type of S. brevicurpus guerini.-Cat. No. 24797, U.S.N.M.

LÆVIMANUS Group.

SYNALPHEUS LONGICARPUS (Herrick).

Alpheus saulcyi var. longicarpus Herrick, Mem. Nat. Acad. Sci., V, 1891, p. 383 (part).

I have previously shown that this species is closely allied, not to A. brevicarpus Herrick, but to the European species S. lavimunus (Heller). However, it is not synonymous with the latter, any more than any of the forms which follow. I have indicated in the introduction to this work why it was necessary to break up into several distinct specific forms A. saulcyi var. longicurpus Herrick. I have retained the original name for the above species, as it appears to me to be the most abundant of the Levimanus group on the American coasts.

The frontal border has three unequal teeth, the median narrow, a little longer, the lateral having from 2 to 2.5 times the width of the median part of the rostrum; their interspaces are in form of a V , with borders little divergent.

The basal antennular article is the longer; its anterior margin is less emarginate on the inside than in the greater part of the species of the group. The relative lengths of the articles are 2, 1.5, 1 . The antennule is 5 times as long as wide; the flagella are slender, the external bifurcates after the sixth article.

The stylocerite reaches the distal third of the basal article. The basicerite has its superior angle obtuse; its lateral spine reaches the extremity of the median article of the antennule. The scaphocerite is almost always devoid of a scale in the male; it bears one of variable length in the female, but it hardly surpasses the extremity of the basal antennular article, and it is never more than half the width of the lateral spine, which is very strong, sharp, and exceeds the antennule by about half its distal article.

The carpocerite is cylindrical, rather slender, curved outward, and surpasses the antemmle by the length of the distal article; it is 5 times as long as wide, and sometimes up to 5.5 or 5.6 times.

Fig. 31.-Sinalifiedes longicarpl's. \quad, frontal and antennal region, male and female ; c, cabpocerite; K, large chela; $K^{-\prime \prime}$, carpl's and meropodite of large cheliPed; k^{\prime}, sambl cheliped of first pair, male and female; kk, fingris of salale cheliped of first pair; l, foot of second pair, male and female; m, foot uf third Pair, male and female; m ". dactyl of thimd fair ; m ' ${ }^{\prime \prime}$, dactyl of third pair of a
 TELSON ; tt. TELSON AND I'ROPODS, FEMALE; u, UROPOD.

The relative dimensions of the large chela are: Fingers 1; total length 4.1 ; height 1.5 ; T. L.: $\mathrm{H} .=2.73: 1$. The margin of the palm presents forward a strong tubercle, ending in a fine point. The movable finger has its point out of the perpendicular. The palm
is prolonged behind, and the rery small carpus is inserted below the principal axis of the ovoid palm. The meroporlite, the superior' border of which ends in a right angle, is e.2. times longer than wide. In a comparison of the male and female, the large claws are in about the proportion of 1.3 to 1 .

The small claw is, to the large one, in the proportion of about 2.5 in the female, of 3 in the male, so that it is apparently of the same size in both sexes; the relative dimensions are: Fingers 1; total length 3 ; height about 0.8 ; T. L. : H. $=3.75: 1$. The movable finger bears two teeth, the lower of which is the stronger; the fixed finger bears besides its point, two short angular prominences.

The carpus shows some rather remarkable rariations; in the larger specimens it is constantly longer than the palm; it is usually a little shorter in medium or very small specimens of either sex. The total length of the chela being taken for a mit, the length of the carpus may rary from 0.74 to 0.56 and even 0.5 ; it is always shorter in the female. In every case its distal width remains equal to that of the chela. The meropodite is about 4 times as long as wide (4.4 in the male, 3.6 in the female of large size):

The second pair is notably stronger in the male (1.08), but of similar proportions in both sexes; the first segment of the carpus is shorter than the sum of the other 4 (proportion 1.2) ; the meropodite equals twice the first carpal segment. The terminal claw is longer, in the male, than the last 4 segments, but shorter in the female; it bears, especially in the male, about ten tufts of hair.

The third pair is also stronger in the male, where its relative dimensions are: Meropodite 2.33, carpus 1, propodite 1.7; the meropodite is 3.5 times longer than wide.

In the female these dimensions are: Meropodite 2.1, carpus 1, propodite 1.55 , the meropodite being 3.8 times longer than wide. The ischiopodite is more slender and elongated also than in the male. The dactyl is short, one-sixth or more of the propodite; the two hooks are almost equal and divergent, the ventral normal to the lower border, a little thicker at the base than the dorsal, becoming proportionately longer in specimens of large size (female of 27 to 28 mm .). The sixth abdominal somite shows on either side of the telson a wide triangular point. The pleopods of the fifth somite have a very short base and a wide posterior expansion especially marked in the female, where it contributes to close the incubatory cavity. The anus is shown under the telson between two very prominent swellings. All the abdominal pleura of the male, even the second, end in a point. These last details are more marked in the Leminanus group than in any other, and especially in the two species S. Iongicarpus and S. pectiniger.

The telson has the following relative dimensions in the male: Small base (distal) 1; large base (proximal) 1.7; height 2.3. In the
female the large base is double the small. The posterior margin bears 4 spines, the inner a little longer, with 4 long plumose hairs between them, and 3 pairs of simple hairs inserted above the preceding. The uropods are larger in the male, the outer especially; the latter bears on its onter margin above the transverse suture a series of 7 to 8 teeth and a movable spine between the first two.

The eggs are of small size and the larve are zoër. The species may be found in sponges, but it is not probable that such is its normal habitat.

I have been able to separate among the young males a rather large number of specimens different from the type and different also from the following species, S.

Fig. 32.-SYNALPIIEUS LONGICARPUS APPROXIMA. a, FRONTAL AND ANTENNAL REGION; c, CARPOCERITE; K, LAIGE CHELA; i^{\prime}, SMALL CHELIPED OF FIRST PAIR OF A YOUNG SPECIMEN; $k k^{\prime}$, SMALL CHELIPED OF FIRST PAIR OF AN ADLLT ; m, MEROPODITE OF THIRD FOOT; t, TELSON. goodei, with which, however, they agree in having a well-developed antennal scale. Comparee? to young male longicarpms of the same size, they are distinguished-
(1) By the antennal scale reaching the extremity of the second article of the antemmule: (2) by the carpocerite a little thicker (proportions: 1:4.6, 4.9 or 5 , instead of $1: 5.5$ or 5.6); (3) by the large chela in which the anterior border of the palm ends in an obtuse point, conical and strong; (4) by the telson a little narrower at the base; this is contained 1.8 times in the height instead of 1.4 times.
Excepting in the form and size of the antennal scale, which are quite similar, these specimens are also shown to be very distinct from the males of S. goodei of the same size-
(1) By the carpocerite a little thicker (the same difference as with S. Tongicarpus) : (2) by the large chela, invariably shorter and thicker in S. goodci, even in the young, not exceeding 12 mm . in length (proportion of thickness 1.1) ; (3) by the small chela, of which the carpus and the palm are shorter in S. goodci; their sum equals only 4 times the height of the palm instead of is times, as in the specimens
under discussion. The meropodite is also thickened in the same proportion in S. goodci; (t) by the meropodites of the third pair longer and more slender (proportion 1:4.2 instead of $1: 3.5$).

I have met only one adult male which appears to be referable to this form; the carpus of the small cheliped measmes 0.54 of the total length of the chela. It is accompanied by several other specimens, but they are too incomplete to permit of the appreciation of the fine distinctions which separate S. goode i and S. longicarpus.

I hesitate to consider this form as specifically distinct from S. Iongicarpus, although the adult specimen differ's from it only by the presence of an antennal scale ; this is, however, much reduced. Neither is the form of the anterior palmar tubercle very constant in S. longicarpus, as the small spine which terminates it may be absent. It seems to me sufficient to distinguish these specimens as form approxima.
Localities:
S. longicarpus-

North Carolina :
Off Cape Fear, 15 fathoms, Ilbatross Station No. 2623, 20 to 30 specimens.
Gulf of Mexico:
Lat. $27^{\circ} 4^{\prime}$ N., long. $83^{\circ} 21^{\prime} 15^{\prime \prime} \mathrm{W} ., 26$ fathoms, Albatross Station No. 2409,7 specimens.
Lat. $26^{\circ} 33^{\prime}$ N., long. $83^{\circ} 10^{\prime} \mathrm{W}$., 28 fathoms, Fish Hawk Station No. 7123,1 specimen.
Lat. $26^{\circ} \mathrm{N}$., long. $82^{\circ}{ }^{5} . \mathrm{r}^{\prime} 30^{\prime \prime} \mathrm{W} ., 24$ fathoms, Albatross Station No. $2413,4,000$ to 5,000 specimens.
Yucatan:
Off Cape Catoche, 25 fathoms, Allatross Station No. 2362,20 specimens.
Off Cape Catoche, 21 fathoms, Albatross Station No. 2363, 15 to 20 specimens.
Jamaica, in massive black sponges, 10 to 12 fathoms, J. E. Duerden.
Curaçao, 2 specimens.
S. longicarpus approxima-

Gulf of Mexico, 26 fathoms, Allatross Station No. 2409, 4 specimens, type.
Gulf of Mexico, 24 fathoms, Allatross Station No. 2413, 2 specimens.
Gulf of Mexico, 26 fathoms, Lllatross Station No. 2414, 4 larger specimens (mutilated).
Type of S. longicarpus approxima.-Cat. No. 38398, U.S.N.M.

SYNALPHEUS GOODEI, new species.

The frontal margin very forcibly suggests that of the preceding species; the rostrum is quite a little longer than the lateral spines, and the latter are more completely triangular.

The articles of the antennule have as proportions, $2.3,1.2,1$, the antennule being 5 times as long as wide; the basicerite of the antenna has its superior angle somewhat sharp; its lateral spine reaches the extremity of the median antemnular article.

K

6, Frontal and antenna region, male and female; c, CARPOCERITE OF A YOUNG SPECIMEN ${ }^{a} ; K$, LARGE CHELA; $K i K$, LARGE CHELA OF A YOUNG SPECIMEN ${ }^{a} ; k^{\prime}$, SMALL CHELIPED OF FIRST PAIR; $k k^{\prime}$, SMALL CHELIPED OF FIRST PAIR OF A YOUNG SPECIMEN ${ }^{a}$; $k^{\prime \prime \prime}$, FINGERS OF SMALL CHELIPED OF FIRST PAIR; l, FOOT OF SECOLD PAIR; m, FOOT OF THIRD PAIR; $m m$, MEROPODITE OF THIRD FOOT OF A YOUNG SPECKMEN ${ }^{a} ; m^{\prime}$, DACTYL OF THIRD FOOT ; t, TELSON ; u, UROPOD, MALE AND FEMALE.

The scaphocerite always possesses a scale, which is of the same dimensions in both sexes, and often reaches the middle of the distal antennular article; the lateral spine is as in the preceding species.

The carpocerite is 5.2 times (in the young) to 5.7 to 6 times longer than wide.

[^4]The large chela has as its proportions, fingers 1: total length 3.in to 3.6 : height about 1.3 : the relative total length is a little less in the female, but the difference in size is very slight; the form of the chela is quite different from that of S. longicarpus; the margins of the palm are nearly parallel, the anterior margin terminating in a strong tubercle which is prolonged by a point inclined downward: the carpus is inserted in the prolongation of the greater axis: the meropodite is proportionately stouter (proportion 2.0.5), its superior margin terminating in a prominent, not spinons, lobe.

The small chela has the following relative dimensions: Fingers 1: total length 2.8 ; height 0.96 to 1 ; the movable finger terminates in two short teeth; the carpus is always much shorter than in S. longicarpus; in the largest examples its length does not surpass 0.43 of the small chela, this proportion reaching 0.74 in the preceding species; in the young this proportion remains the same, while it is very variable in S. longicarpus; the carpus is always a little less thick than the palm, the margins of which are not parallel, as in S. longicarpus; the meropodite is a little more than 3 times as long as wide. I have found no sexual differences.

In the second pair, the first segment of the carpus, the sum of the four following and the terminal chela are all very nearly equal; the carpus is at least 7 times as long as wide.

The third pair has these proportions in the male: Meropodite 2.2: carpus 1; propodite 1.5 to 1.6 ; the meropodite is 3 to 3.2 times as long as wide; in the female these proportions become, respectively, $2.6 ; 1: 2$; and the meropodite is nearly 3.5 times as long as wide, the entire appendage being more slender; the dactyl is short, very like that of S. longicarpus.

The second abdominal pleuron is not spinous in the male.
The telson has its wide base contained 1.24 times, and its small base about 4 times, in its height; the spines of the dorsal surface, especially in the male, are much stronger than those of the posterior border, the inner of which, a little the longer, include between them 4 plumose hairs and 2 groups of 3 simple hairs.

The uropods bear upon the outer border 8 teeth in the female and from 9 to 17 teeth in the male, the first and strongest of which prolongs the transverse suture; and there is also a movable spine placed between the two first teeth.

As in S. longicarpus, the eggs give rise to zoëre.
The two species, which are very close to each other, are further comected throngh the forms which represent them on the Pacific coast. The Paris Museum possesses some specimens collected by M. Diguet in the Gulf of California, which are distinguished from S. goodei by the total absence of an antennal scale and by the presence of 5 to 9 teeth on the external uropod even in the male, characters
which wonld ally them rather to S. Tongicarpus; but they approach S. goode in having the small chela thicker than in S. longicarpus, as

FIG. B4.-SINALPIIEGS GOODEI OCCIDENTALIS. a. FRONTAL AND ANTENNAL REGION: a^{\prime}. FRONTAL, AND ANTENNAL REGION; K, LARGE CHELA; κ^{\prime}, SMALL CHELIPED UF FIRST PAIR; m, FOOT OF THIRD TAIR; u, UROPODS.
is shown in the following table, and in having the meropodite of the third pair thicker:

Species.	Ratio of total length to height in small chela.	Ratio of me ropodite to small chela.	Ratio of length to width in meropodite of third pair.
S. longicarpus, female	3.5-3.6	4.0	3.8
N. goodei, female	3.0	3. 0	3.5
\therefore s.goulei occilcutalis, female	3.2	3.5	3.3-3.4

A female is especially like S. goodei in possessing a rudiment of an antemal scale a stylocerite longer than the basal antennular article, the meropodites of the third pair more similar to those of the female of S. goorlei (proportion 3.t), and lastly 12 spines on the outer uropod, as in the male of the last-named species. I propose to desigmate the example from the Pacific under the name of S. goorlei occidentalis, remarking that the female last described would probably be found to be more distinct in a more extended series.

Named for the late Dr. George Brown Goode, Assistant Secretary in Charge of the United States National Museum.

Localities:
S. goodei-

Gulf of Mexico, 31 fathoms, firempurs Station No. 5088,1 specimen.
Tampa Bay, $6 \frac{1}{2}$ fathoms, Fish Itacki Station No. T109, 1 specimen.
Near Colon, 34 fathoms, Albatross Station No. 14T, 1 specimen.
Bermudas, George Hawes, 2 specimens.
Bermudas, Harrington Sound, in sponges, George Ilawes, 7 or 8 specimens.
Bermudas, G. Brown Goode, 20-30 specimens, type.
S. goodei occidentalis-

Lower California, Gulf of San José, M. Diguet, 7 specimens (Paris Museum).
Type of S. goodei-Cat. No. 24821, U.S.N.M.

SYNALPHEUS SANCTITHOMA, new species.

Although rery like S. goodei, this species ought certainly to be separated from it.

The basicerite has an obtuse superior angle; its lateral spine does not reach the extremity of the median article of the antennule; the antennal scale is $1 \frac{1}{2}$ times as wide as in S. goodei, and does not exceed the extremity of the median article of the antennule; its lateral spine is very slender, and shorter than the antennule.

The rery thick carpocerite, which is 4 times as long as wide in the female, only 3.5 times in the male, is the principal distinctive character of this species.

The large chela is more slender and elongated than in S. goodei, especially in the female; its relative dimensions are: Fingers 1 ; total length 3.66 ; height 1.28 , in the male; and respectively $1 ; 4$; and 1.1 , in the female; the upper margin of the meropodite is strongly convex and presents no prominent anterior angle.

The small chela in the male has the following proportions: Fingers 1 ; total length 3 ; height 1 ; the carpus measures 0.42 of the length of the chela, and the meropodite is 4 times as long as wide; in the female the proportions of the chela become $1 ; 2.56 ; 0.8$.

The two chelæ are notably smaller in the female (proportions 1.15 for the large; 1.1 for the small chela).

In the second pair the first segment of the carpus is smaller than the sum of the four others, and is also smaller than the terminal chela.

The proportions of the third pair are: Meropodite 2.43; carpus 1; propodite 2 ; the meropodite is 4.4 times longer than wide; in the female the proportions become $3 ; 1 ; 2.15$; and the meropodite is more than 5 times as long as wide.

The height of the telson is 1.47 times the width of the base and 4.7 times the posterior margin; it is consequently more elongated than in S. goode; the spines of its upper surface are weak, and the imper spines of the posterior border are more than twice as long as

Fig. 35.-SiNalfheUs SANCTITIOMD. a, FRONTAL AND ANTENNA REGION; R, LARGE CHELA, MALE AND FEMALE; $h^{\prime \prime \prime}$, CARPUS AND MEROPODITE OF LARGE CIIELIPED, MALE AND FEMALE; $k^{\prime \prime}$, SMALL CHELIPED OF FIRST PAIR, MALE AND FEMALE; l, FOOT OF SECOND PAIR; m, FOOT UN THIRD PAIR; t, TELSON ; u, UROPOD.
the outer ; the border of the outer uropod has not more than 2 fixed teeth, without an intermediate sutural spine.

The eggs give rise to zoëæ (0.8 mm . in greatest diameter).
Localities:
St. Thomas, 20 to 23 fathoms. Fish Hawk Station No. 6079, 1 male and 1 female of very small size (9 mm .), types.
St. Thomas, 20 fathoms, Fish Hawk Station No. 6080, 1 female.
Type. -Cat. No. 24782, U.S.N.M.

SYNALPHEUS GRAMPUSI, new species.

The three frontal teeth are equal in length, but the rostrum, with parallel margins, is scarcely one-fourth of the width of the lateral teeth, which are widely rounded at their extremity : the intervals between the rostrum and the lateral teeth have parallel borders, and are therefore U-shaped : the rostrum is placed at a lower level, and is continued backward by a short and narrow crest.

The segments of the antenmle are to one another as 2.15, $1.3,1$; the stylocerite is a little shorter than the basal anticle; the basicerite has its upper angle a right angle, and its lateral spine very strong, reaching the last third of the distal segment of the antemmule; it has the same width and length as that of the scaphocerite, which bears no trace of a scale in either sex; the carpocerite exceeds the antennule by the length of the distal article, and is 5.5 tines longer than wide, a little concave exteriorly.

The proportions of the large chela are: Fingers 1 ; total length 3.3 ; height 1.3 ; it is consequently much like that of S. goodei, and likewise possesses a strong tubercle on the anterior margin of the palm, with a short spine directed toward the base; the meropodite has a straight, not spinous, upper margin.

Fig. 36.-SyNALPHEUS GRAMPUSI. $\quad a$, FRONTAL AND ANTENNAL REGion, MALE; $a{ }^{*}$, ANOMALOU's SPECIMEN; K, LARGE CHELIPED; k^{\prime}, SMALL CHELIPED OF FIRST PAIE; l, FOOT OF SECOND PAIR; m, FOOT OF THIRD IAIR, MALE AND FEMALE; t, TELSON ; u, UROPOD.

The small chela is to the large as 1 to 2.9. Its relative dimensions are : Fingers 1 ; total length 2.68 ; height 0.85 to 0.9 ; both fingers end in a sharp point; the carpus is 0.52 of the entire cheliped; the meropodite is 3.9 times longer than wide.

In the female these proportions become, for the large chela : Fingers 1: total length 3.3 ; height 1.37 ; and for the small chela, respectively, $1: 2.78 ; 0.9$; the large chela is therefore a little more thick-set in the female, and the fingers of the small claw are slightly shorter.

In the second pair the first segment of the carpus equals the terminal chela, the sum of the other 4 segments being greater; the carpus is about 9 times as long as wide.

The third pair is rery robust in the male. The relative dimensions are : Meropodite 2.33 ; carpus 1 : propodite 1.6 ; the meropodite is only 3 times as long as wide; the dactyl has its two looks almost equal, the rentral a little stronger.

In the female the proportions remain the same, but the dimensions of the second and third pairs are noticeably less (about 0.8).

The height of the telson is 1.2 times the width at the base, and 3.9 to 4 times the posterior margin, the last dimension as in the males: the border bears t equal and almost equidistant spines, including between them, on a narrow, convex portion of the margin, 5 hairs, of which 3 are large and plumose: the spines of the upper surface are longer than those of the margin.

The onter border of the uropod bears $(i$ to S spines, the first large. continuing the border of the suture, the second and following rapidly diminishing; only the last or the last two are not mobile.

The eggs give rise to zoëx.
I have never met with any restige of an antennal scale: on the other hand, a male (Fish Haw\% Station No. 7124) shows an interesting variation in the length of the antennal spines, which do not reach to the extremity of the median antennular article; this specimen indicates the way in which S. pundionix, the next American species described, has become differentiated.

One female ((rrumpus Station No. 5116), of which all the eggs are hatched, and the zoëre are still present under the abdomen, shows the opposite variation; both the antemal spines equal the antemmle, and are also thicker than usual; the stylocerite is also a little longer.
Localities:
Gulf of Mexico:
Lat. $26^{\circ} 30^{\prime}$ N., long. $833^{\circ} 30^{\prime} \mathbb{W} ., 33$ fathoms, Grampus Station No. $511(6$, a female (not quite typical).
Lat. $26^{\circ} 33^{\prime}$ N.. long. $83^{\circ} 10^{\prime}$ W., 28 fathoms, Fish Mawh. Station No. 7123,1 male, 2 females, types.
Lat. $25^{\circ} 50^{\prime} 15^{\prime \prime}$ N., long. $82^{\circ} 41^{\prime} 45^{\prime \prime}$ W., 21 fathoms, Fish Huwh station No. 7124, 2 males, 3 females.
Lat. $27^{\circ} 04^{\prime} 00^{\prime \prime}$ N., long. $83^{\circ} 21^{\prime} 15^{\prime \prime}$ W., 26 fathoms, Alluatross Station No. 2409.
Type.-Cat. No. 38399, U.S.N.M.
The species is very close to the one that I described in a previous paper under the name S. lwimanur var. parfaiti, and which should also be separated as a distinct species. It is unfortunately represented by a single female, of which the small chela is missing.

The frontal teeth and the rostrum are separated by wider intervals with divergent margins: the lateral teeth are wider at the base and less obtuse at the extremity; the rostrum is on a level with them, and
is prolonged backward by a very slight, but wide, erest. The artieles of the antemule are to one another as $1.8,1,1$.

The lateral spine of the basicerite is a little longer than the antennule and also than the spine of the saphocerite: the latter is a little narrower than the preceding, and carries a very well marked rudiment of a scale which does not, however, exceed the extremity of the basal antennular article.

The large chela has as proportions, fingers 1 ; total length 4 ; height 1.5; it is more tapering distally, and the tuberele on the margin of the palm is less prominent, bearing no spine; the superior margin of the meropodite is convex, and rounded at the distal extremity.

The small chela is missing.

FIG. 37.-SINALPHEUS PARFAITI. a, FRONTAL AND ANTENNAL REGION: \mathscr{K}, LARGE CHELA AND CARPUS; $K^{\prime \prime \prime}$, CARPUS AND MEROPODITE OF LARGE CHELIPED; m, FOOT OF THIRD PALE; m^{\prime}. DACTYL OF THITL PAIR ; t, TELSON ; n, UROPOD.

In the second pair the first segment of the carpus, the forr following, and the distal chela are approximately equal.

The proportions of the third pair are: Meropodite 2.28; carpus 1; propodite 1.7 ; the meropodite is 3 times longer than wide, as in S. grampusi.

The height of the telson is 1.08 times the width of the base, 2.66 times the posterior margin, which latter has its inner spines 2.5 times wider than the outer, and also much stronger; between them are six plumose hairs and two lateral groups of three simple hairs; the spines of the superior face are shorter and stronger than in S. grampusi.

Proc. N. M. vol. xxxvi- $09-5$

The external margin of the uropod bears only two short teeth, with one long movable spine nearer the sutural tooth.

The larva are zoëx.
The type comes from Annobon, off the west coast of Africa (Count Parfaite, Paris Museum).

Named for the collector.
Synalphens lecimamus (Heller) of the Mediterranean is quite distinct from both of these species; the frontal margin bears three equal teeth, the rostrum being about two-thirds as wide as the lateral teeth, and in height four times its median width, or a little less.

FIG, 3S.-SYNALPIEUS LEEVMANLS. $\quad\{$, FRONTAL AND ANTENNAL REGION, MALE AND FEMALE; u^{\prime}, FRONTAL AND ANTENNAL HEGION, MALE WITII ITDDMENTAIY SCALE; $u^{\prime \prime}$, FRONTAL AND ANTENNAL REGION, MALE INTERMEDIATE; K, LARGE CHELIPED; $k^{\prime \prime}$, SMALL 'HELIPED OF FLRST PAIR: 7 , FOOT OF SECOND PAIR; M, FOUT OF THIRD PAIR: M^{\prime}, DACTSL OF THIRD PAIR; t, TELSON゙; U, LROPOD.
The articles of the antennule are to one another as $1.55,1.0 \overline{\mathrm{~h}} .1$; the stylocerite is narrow and equals the basal article.

The superior angle of the basicerite is obture. its lateral spine reaching to at least the middle of the basal antemular artiele: the scaphocerite is not provided with a scale in the females, where its place is only indieated by a slight prominence of the inner margin of the spine; in the males the scale is of variable length, from a very slight
rudiment to a scale reaching the proximal third of the median antenmular article; its lateral spine, wider than that of the basicerite, hardly reaches beyond the middle of the distal antennular article; the carpocerite exceeds the antemnule by one-half of the distal article, and is 6 times longer than wide.

The proportions of the large chela, in the male, are: Fingers 1; total length 3.4 ; height 1.35 ; the anterior margin of the palm bears a tubercle which terminates in a horizontal spine; the meropodite is rounded and unarmed on its superior margin; the proportions are the same in the female, but the palm is more tapering anteriorly.

The proportions of the small chela are: Fingers 1; total length 2.8; height 1: the carpus measures only 0.35 of the entire chela; the meropodite is 3.3 times as long as wide: the fingers terminate in a single point; the plume of hairs of the movable finger is less thick than in S. grampusi. In the female the small chela is only slightly narrower, the proportions being $1,2.8,0.92$; the meropodite, with the same proportions, is also a little more slender.

In the second pair. in both sexes, the first segment of the carpus, the sum of the four following ones, and the distal chela, are nearly equal. but progressively diminish slightly in length; the carpus is 10 times longer than wide.

The proportions of the third pair are: Meropodite 2; carpus 1 ; propodite 1.6 ; the meropodite is 3.5 times longer than wide; the dactyl is short, terminating in two equal and slightly divergent hooks.

In the female the proportions are approximately the same; the height of the telson is 1.2.5 times its base and 3.6 times its posterior margin, which bears two pairs of feeble spines, the inner ones slightly the longer ; between these are ten plumose hairs.

The external uropod bears only two feeble teeth, with a movable spine between them.

The eggs give rise to zoëx.

SYNALPHEUS PANDIONIS, new species.

This species is distinguished from S. grampusi only by very slight differences, of which the principal one is the presence of a welldeveloped antennal scale. It is also very like S. parfaiti, which it approaches especially in this last character. However, I believe that these three forms are perfectly distinct. They appear to be the result of different types of rariation.

The frontal teeth resemble those of S. parfaiti, but this is not true of the stylocerite. which is always markedly shorter than the distal article of the antennule, as in S. grampusi: the superior angle of the basicerite is obtuse, its lateral spine reaching the extremity of the median antennular article; the scaphocerite has in both sexes a very distinct scale, which reaches the middle of the median anten-
mular article, and is sometimes as wide as the lateral spine; the latter is equal to that of the basicerite, or is very slightly shorter; the carpocerite exceeds the antennule by $1 \frac{1}{2}$ times the length of the distal article; it is concave exteriorly and 6.5 times longer than wide, being, in consequence, more slender than in S. grampusi and S. parfaiti.

The proportions of the large chela are: Fingers 1: total.length 3.3 ; height 1.3 in the male; that of the female is more stocky, the last dimension reaching 1.4 ; T. L.: $\mathrm{H} .=2.3: 2.5$. By its form, by the spine, which is directed obliquely downward, and is on the anterior border of the palm, this chela is much like that of S. grampusi.

FIG. 39.-SYNALPILETS PANDIONIS. a. FRONTAL, AND ANTENNAL REGION; c, CARPOCERITE, MALE AND FEMALE; k, LARGE CHELA; k^{\prime}, SMALL CHELIPED OF FIRST PAIR; 7 , FOOT OF SECOND PAIR ; m, FOOT OF TIIRD PAIR, MALE AND FEMALE; t, TELSON.

The small chela is to the large as 1 to 3 , in both sexes; it is consequently smaller than in specimens of S. grampusi of the same size; the proportions are as follows: Fingers 1: total length 2.4: height 0.72: it is therefore more slender than in S. grampusi.

The second pair has the same proportions as in S. grampusi, but it is a little more slender (proportion about $1: 1.08$) especially in the female.

The third pair are similar: the meropodites are equal in two specimens, one of S. grampusi and one of S. pandionis, of the same length, but the proportion of the length to the width is 3.3 in the first case, 3.8 in the second, even more pronounced in the male; in the female of S. pandionis this proportion is reduced to $3 . \%$.

The telson is like that of S. grampusi; the outer uropod bears 4 to 6 spines.

The eggs give rise to zoër.
Locality: St. Thomas, 20 to 23 fathoms, Fish Hawle Station No. $6079 ; 2$ males, 4 females.

Among the specimens is a female which may be considered an "oxyceros" form (subspecies cextchtus) of this species, as the spines of the basicerite and of the scaphocerite equal the antennule, and the antennal scale reaches the end of the median antennular article. S. grampusi and S. parfaiti are equally "oxyceros" relative to S. pandionis, which last may be considered as more primitive and less adapted to creeping or fixed life on account of the persistent antenmal scale, the more feeble feet, the less armed uropods, etc.

Type of S. pandionis.-Cat. No. 38400 , U.S.N.M.

Type of S. pandionis extentus.-Cat. No. 38401, U.S.N.M.

SYNALPHEUS BROOKSI, new species.

This species and those following (S. tanneri, S. herricki, and S. pectiniger) constitute in the Levimanus group a collection of forms closely allied, of small size and often associated. In the absence of the small cheliped it is a difficult matter to separate S. brooksi and S. pectiniger, as they both show curious anomalies in the

IFIG. 40.-SYNALPHEUS PANDIONIS EXTENTVS. a, FRONTAL AND ANTENNAL REGION; c, CARPOCERITF. number and size of the eggs: after S. longicarpus (in company with which they are frequently found), they are among the most common forms.
S. broolisi has the tridentate portion of the frontal border distinct, joined to the adjacent portions by slightly concave curves; the three frontal teeth are short and equal, the rostrum narrower; the axes of the lateral teeth are divergent.

The articles of the antennule are to each other as $1.7,1.05,1$; the stylocerite, short and wide, reaches about the middle of the basal article; the superior angle of the basicerite is very obtuse, its lateral spine reaching the middle of the median antennular article; the scaphocerite is absolutely deroid of a scale and is reduced to its lateral spine, which is more slender and very slightly longer than the preceding; the cylindrical carpocerite, a little concave externally, exceeds the antennule by three-fourths of the distal article; it is
short, only 4.5 times longer than wide (4.4 in the male, 4.6 in the female).

The sexes frequently differ in the proportionate size of the large chela, but this character is very inconstant. The most massive form, which I have observed in the males, correspond to the follow-

FIG. 41.-SYNALPHEUS BROOKSI. a, FRONTAL AND ANTENNAL REGION, MALE AND FEMALE; c, CARPOCERITE, MALE AND FEMALE; $e \operatorname{B}$, EGG OF NORMAL SIZE; e C, EGG OF ABNORMAL SIZE FROM FLMALE, ALbATRUSS STATION NO. $\because 362 ; e$ D, EGGS OF ABNORMAL SIZE FROM FEmale, blake ; K, LARGE CHELA; K, LARGE CHELA, FEMALE, BLAKE; K C, LARGR CIIELA, ANOMALOL'S, ALBATROSS STATION NO. 23G2; $h^{\circ} 1$, LALGE CIFELA, ANOMALOUS, FEMALE, BLAKE; $\kappa^{\prime \prime}$, CARPUS AND MEROPODITE OF LARGE CHELIPED; k^{\prime}, SMALL CHELIPED OF FIRST PAIR, MALE AND FEMALE; $k^{\prime \prime \prime}$, FLNGERS OF SMALL C\&ELIPED OF FIRST PAIR; l, FOOT OF SECOND PAIR; m, FOUT OF TIIRD PAIR; m^{\prime}, MEROPODITE OF THIRD PAIK; $m^{\prime \prime}$, DACtYL OF THIRD PAIR; t, TELSON, MALE AND FEMALE; t^{\prime}, EXTREMity OF TELSON; 11 , UROPOD.
ing dimensions: Fingers 1; total length 3.43; height 1.26 (Albatross Station No. $23\left(\dot{2}_{2}\right)$, the proportion of the length to the height being only 2.7 ; but it is much more frequent to find the chela becoming more slender and this proportion equal to $2.9,2.97,3$; the
extreme cases are those in which the proportion becomes equal to 3.25, the fingers being equal in length to the height of the palm.

In the female there are some very similar variations. I have found in a very ovigerous female (all the eggs of which were of normal volume) these proportions: Fingers 1: total length 3.6: height 1.28 ; the proportion L.: H. being 2.8 ; it is a chela which one would not know how to differentiate from that of a male, any more by its absolute dimensions than by its size in relation to that of the animal. The extreme cases are those in which the proportions become: Finger's 1 ; total length 2.75; height 0.9; the proportion of $\mathrm{L} .: \mathrm{H}$. then being about 3.05 , and the fingers very elongate; I have met with this last form particularly among some anomalons females, carrying few eggs, very small, and probably sterile.

The most typical specimens, among those which appear to me to have been collected together, have their large chelae very dissimilar: as an example, the proportions of a male and a female of the same size from Curacao are given below:

	Cephalothorax.	Large chela (total length).	$\begin{gathered} \text { Proportion } \\ \stackrel{L}{\mathrm{~L}} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \text { Propurtion } \\ H \\ \text { D } \end{gathered}$	Proportion of the large chela to the cephalothorax.
Male (12 mm . long).. Female (12 mm , long)	$\begin{aligned} & 5.0 \\ & 4.6 \end{aligned}$	Propwrtion 1.5	$\begin{aligned} & 3.00 \\ & 3.29 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.05 \end{aligned}$	1.24 .88

It is seen here that the male and female, as is very frequently the case in the Synalpheids, differ in the length of the abdomen, which is longer and especially stonter in the female, where the eggs distend the plema, and also in the large chela, which is smaller and more slender in the female.

A constant character of the large chela is the presence of a conical tubercle, very prominent, and directed a little obliquely upward, which terminates the anterior border.

The small chela in the male is to the large in the proportion of 3.3 to 3.4 ; its relative proportions are: Fingers 1 ; total length 2.7 to 2.8 ; height 0.9 to 0.95 ; the fingers each terminate in two hooks; the carpus measures 0.46 to 0.5 to 0.51 of the whole chela; the meropodite is 3.6 times as long as wide.

In a female chosen from among the most normal specimens the small chela is to the large one in the proportion of about 2.3 ; its relative proportions are approximately the same as in the male, the carpus being, however, longer (0.5 to 0.6 of the total chela).

In the second pair the proportions of the first segment of the carpus, of the four following ones, and of the chela are 1, 1.2, 1.2; the meropodite measures 0.9 of the carpus in the female; in the male these proportions become 1, 1.4, 1.4, and the meropodite is equal to the carpus.

In the third pair the proportions are: Meropodite 2.26; carpus 1; propodite 1.62 ; the meropodite is no thicker in the male than in the female (proportions 4.3 to 4.5) ; the dactyl is short, with two teeth slightly divergent, the ventral a little stronger and shorter.

FIG. 42.-SYNALPHEUS BROOKSI STREPSICEROS. a, FRONTAL AND ANTENNAL REGION; c, CARPOCERITE; k^{\prime}, SMALL CHELIPED OF FIRST PAIR; l, FOOT OF SECOND PAIR.

The height of the telson in the males is a little less than 4 times its posterior margin and 1.23 times its wide base; in the females this last proportion becomes 1.1 ; between the posterior spines, the inner of which are the longer, are found four plumose hairs, with two pairs of simple divergent hairs; the outer uropod bears only two teeth, between which is a movable spine.

Fig. 43.-SVNALPHET'S BROOKSI ELEUTHERE. \quad, CARI'OCERITE; K, LAIGGE CHELA, FEMALE; k^{\prime}, SMALL CHELIIED; m, MEROPODITE NF TIIRD lilli.

The eggs are very large; I have counted at the most sixteen, and they give rise to very advanced mysis larve. When freshly laid they measure about 1.1 mm . in the long axis, and they increase to 1.6 mm. when the sixth pleosomite attains the height of the eyes in the larva folded in the egg; but females are also frequently found whose eggs do not exceed 0.5 to 0.6 mm . in the long axis; these eggs are, moreover, few (3 to 10) and have a chalky aspect in alcohol; they are probably not destined to develop. These females have in their abdominal pleura the characters of the males, as if they had been castrated by some internal parasite.

Named for the late Prof. William K. Brooks, of Johns Hopkins University.

The species presents some interesting variations. One male from St. Thomas differs from the types in certain points: (1) The spines of the scaphocerite and basicerite are longer; (2) the carpocerite is
slender, 5.5 times longer than wide; (3) the fingers of the small chela are elongated, the proportions being: Fingers 1; total length 2.38; height $0.76 ;$ proportion $\mathrm{L} .: \mathrm{II}:=3.12: 1$; the carpus is 0.5 of the total length; the large chela is absent; the second and third pairs have their usual characters.
This specimen may be distinguished under the name of S. brooksi strepsiceros.

The elongation of the carpocerite in this specimen is a variation in the direction of the species herrictio.

A second variation, bearing this time on the small chela, characterizes some specimens from the Bahamas (3 females, 5 males) ; the carpocerite remains short (proportion 4, 4.1), thicker even than in typical S. broolisi; the spines of the seaphocerite and of the carpocerite, especially of the latter, are stronger and longer than in the types; the large chela is similar in the two sexes, and even slightly thicker in the females; the proportions are those of the extreme cases met in S. brooksi.

The palm is thus shorter, while remaining as broad, in this character approaching S. hervicki; the proportions of the small chela are : Female, fingers 1 ; total length 2.45 ; height 0.85 ; carpus 0.53 of the total length; male, fingers 1 ; total length 2.5; height 1 ; carpus 0.57 of the total length ; the meropodite is 3.85 times as long as wide in the females, 3.8 times in the males. The males thus seem to show particularly the tendency to the lengthening of the carpus which characterizes S. herrichi, but this lengthening is almost as marked in the females, where it is hidden by the elongation of the chela and especially of the fingers; the feet of the second and third pairs are those of S. broonlisi.

These specimens may be named S. brooksi eleutherce.
Localities:
Bahamas:
B. A. Bean, 1 specimen.

Andros Island, 1 specimen.
The Current, Eleuthera Island, B. A. Bean, 8 specimens, form eleuthere, type, Cat. No. 38403, U.S.N.M.
Florida :
Harbor Key, Union University collection, 1 specimen.
Salt Pond Key, Edward Palmer, about 50 specimens.

Localities-Continned:
Florida-Continued:
Sugar Loaf Key, 50 males and females (several anomalons). including types.
Key W est, H. Hemphill, 2 specimens.
Gulf of Mexico, 27 fathoms, Albatross Station No. 2372, 40 males and females.
Yucatan, off Cape Catoche, 25 fathoms, Albatross Station No. 2362, 80 males and females.
Vieques, 14 fathoms, Fish Hawh: Station No. 6085, 1 specimen.
Vieques, $12 \frac{1}{2}$ fathoms, Fish II awh: Station No. (i095, 2 specimens.
St. Thomas, 20 to 23) fathoms, Fish IIcuw, Station No. 6079, 2 specimens.
St. Thomas, 1 specimen, form strepsiceros, type, Cat. No. 89336 , U.S.N.M.

Brazil, off Cape St. Roque, 20 fathoms, Albatross Station No. 2758, 1 specimen.
Type of S. Imooksi.-Cat. No. 38402 , U. S. N. M.

SYNALPHEUS HERRICKI, new species.

The tridentate portion is distinct from the rest of the frontal margin, to which it is united by rectilinear borders; the three teeth are approximately equal in length, the rostrum a little marrower than the lateral teeth, which are at least as long as wide at the base, and usually longer.

The articles of the antemnule are as $2,1.4,1$; the stylocerite reaches the distal third of the basal article.

The superior angle of the basicerite is obtuse; its lateral spine reaches to at least the middle of the median antemmar article; it is 1.5 times thicker than the spine of the scaphocerite, which bears no trace of a scale ; it is usually, also, very slightly longer, but it may be only equal to it ; the two spines are straight and parallel.

The large carpocerite exceeds the antennule by the length of the distal article; it is a little concare, cylindrical, 5 times as long as wide in the males, or 4.7 to 4.8 in the females.

The proportions of the large chela are very similar in the two sexes: Fingers 1; total length 3.25 to 3.4 ; height 1.33 to 1.35 ; the ratio is $\mathrm{L} .: \mathrm{II} .=2.42$ to $2.5: 1$; these figures apply to the males; in the females they become, respectively, 1,3 to $3.2,1.2$ to $1.35,2.3$ to 2.5 ; the large chela in the female is generally proportionately broader, with the fingers a little longer: the superior margin of the meropodite is convex and unarmed; it is 2.2 times longer than wide.

In the male the proportions of the small chela are: Fingers 1; total length 2.8 ; height 1 ; the carpus is always longer than the palm, measuring 0.8 of the whole chela; the meropodite is 3.3 times longer
than wide; it is thicker than the chela (proportion 1.23), and almost as long as the carpus and the chela joined (proportion (0.79).

In the female the proportions become 1, 2.t5, 0.87 . the fingers being longer; the carpus measures no more than 0.67 of the whole chela : the meropodite is ? times longer than wide. and is also thicker than the chela; it measures $0.7 t$ of the carpus and the chela together; the size being the same, the sexual differences in the length of the chela

FIG. 44.-SyNALPHEUS HERRICKi. a, FRONTAL AND ANTENNAL REGION, MALE AND FEMALE; a^{\prime}, FRONTAL AND ANTENNAL REGION OF ANOTHER MALE; c, CARPOCERITE, MALE AND FEMALE; K, LARGE CHELA; $K^{\prime \prime \prime}$, CARPUS AND MEROPODITE OF LARGE CHELA; k^{\prime}, SMALL CIIELIPED OF FIRST PAIR, MALE AND FEMALE; $k^{\prime \prime \prime}$, FINGERS OF SMALL CHELA OF FIRST PAIR; l, FOOT OF SECOND PAIR, MALE AND FEMALE; m, FOOT OF TIIRD PAIR, MALE AND FEMALE; m^{\prime}, DACTYL OF THIRD PAIR OF TYPICAL MALE; $m^{\prime \prime}$, DACTYL OF TIIRD PAIR OF ANOTHER MALE; t, TELSON, MALE AND FEMALE; u, UROPOD.
are expressed by the proportions 1.45 for the large, 1.15 for the small chela.

In the second pair the first segment of the carpus is, in the male, a little shorter than the sum of the four others, in the female a little longer; the meropodite is a little longer in the male, the whole member being more elongated (proportion 1.2).

In the third pair the proportions are: Meropodite 2.5; carpus 1 ; propodite 1.55 (male) ; and $2.25,1,1.4$ (female), by the shortening of the meropodite and the propodite. In both cases the meropodite is about 4 times as long as wide; the dactyl is small, tapering distally, with two slightly divergent hooks, the ventral the stronger and a little the shorter.

The height of the telson in the male is 1.6 times its base, 3.7 times its posterior margin; in the female the height equals the base, and is

FIG. 45.-SyNALPHEUS HERRICKI ANGUSTIPES. K, LARGE CHELA; k^{\prime}, SMALL CHELIPED OF FIRST PAIR. 4.5 times the posterior margin; in both cases the spines of the superior face are very strong, and are larger than the inner spines of the posterior margin ; between the latter are four plumose hairs and two groups of four simple divergent hairs; the external uropod generally bears four teeth on its free margin, and in addition a movable spine; in the males the teeth may be three or two in number.

The eggs are of large size and give rise to mysis larve.
Named for Dr. Francis H. Herrick, of Adelbert College.
This species, like the preceding, shows several rariations. Among the very typical specimens from Fish Itawk Station No. 7106 I find a female whose small chela is aberrant. In the females of S. herrichi the meropodite and the sum of the carpus and the chela are in the proportion of 0.74 ; in the specimen cited this portion is 0.71 , and the meropodite is more slender; the width is not, in fact, greater than that of the palm, which latter is less swollen at the base, its margins being parallel along its whole length, the proportions being T. L.: H. $=$:3 instead of 2.6 to 2.8 ; the carpus is no more than 0.65 of the entire chela, and it is as wide as the palm at its distal end. In all its other characters this female (form (mgustipes) is a true hemphit: in its small chela it approaches S. brootisi.

Six females from the same station

Fig. 46.-SyNaLPHEI'S HERRICKI DIMIDIATUS. K, LARGE CIIELA; k^{\prime}, SMALL CHELIPED OF FIRST I'AIR. show some differences in the same direction, but still more accentuated and not exactly comparable. The palm and carpus of the small cheliped are very typical, the latter measuring nearly 0.8 of the total chela, as in the male of S. herrichi, and the palm being swollen at its base; the meropodite measures 0.77 of the carpus and chela together, which is also a character of the male of S. herrichi (proportion 0.79), but it is \pm times as long as wide (in-
stead of 3.3 in the male, or 3 in the female) and its width is only 0.78 of that of the palm (instead of 1.23 in the male, 1.15) in the female, of S. herricliz). This slemerness of the meropodite reealls S. brookisi. On the other hand, the large chela is equally slender, as in that last species: Fingers 1: total length 3.28: height 1.22 : proportion T. L.: H. $=2.7$ (1, 3.6, 1.28. 2. 8 in the female of S. broolisi, in which the large chela resembles more that of the male). The anterior palmar tubercle also ends in a slender point.
I shall give to these last specimens the name of S. herrichit dimidiatus.

Another rariation is presented by a female from I/betross Station No. 2372. The rostrum is narrower and the lateral spines wider and more obtuse than in S. herriclit. The proportions of the large chela

FIG. 47.-SYNALPHEV'S TANNERI. a. FRONTAL AND ANTENNAL REGION ; c, CARPOCERITE; K, LARGE CHELA; k^{\prime}, SMALL CHELIPED OF FIRST PAIR; l, FOOT OF SECOND PAIR; m, FOOT OF THII:D PAIR.
are: Fingers 1 ; total length 3.35 ; height 1.39 ; proportion T. L.: H. $=$ 2.t, which approaches near to S. herrichi; the anterior palmar tubercle is very obtuse; the small chela differs from that of S. herricli in the short carpus, measuring only 0.56 of the whole chela: the cheliped is also more slender, the wilth of the meropodite being 1.2 times its ordinary width; in spite of the shortness of the carpus, the meropodite measures 0.75 of the carpus and chela together, as in the female of herrichi, the palm of the small chela being more elongate than in the types of the species (fingers 1 , total length 2.6 , height 0.8 , ratio T. L.: H. $=3.2$, instead of $1,2.47,0.57,2.8$ in S. herrichi female); the feet of the second pair, rather slender in S. herrichi,
are here very stout; compared with two specimens of almost equal size (17 mm . for S. herricki female; 15.5 mm . for S. tanneri femalo type), these appendages are in the ratio of 0.8 in total length and thickness; the proportion of the segments of the carpus is no longer the same, the first segment being here shorter than the sum of the fom others, as in the female of herricliz; the feet of the third pair are also stouter than in S. hervicki, the proportions of these members being about 0.8 ; the relative lengths of the several segments are the same as in S. herriclie male; there are also some differences in the dimensions of the carpocerite (ratio 5.43 instead of 4.8 in S. herrichi female and 5 in S. herpichi male), this being more slender than in the types, and there again approaching some proportions observed in the male.

Although unique, this specimen ought, I believe, to constitute the type of a distinct species. for which I propose the name S. tanneri, in honor of the late Z. I. Tanner, formerly commander of the Albatross.

Localities (for S. herricki and allies):
Anclote, Florida; Capt. Thomas Low; about 150 specimens (types of S. hemicki).
Gulf of Mexico, lat. $25^{\circ} 50^{\prime} 15^{\prime \prime}$ N., long. $82^{\circ} 41^{\prime} 45^{\prime \prime} \mathrm{W} ., 21$ fathoms, Fish Hawk Station No. 7124, 1 specimen (S. herricki).
Anclote Section, Florida, $12 \frac{1}{2}$ fathoms, Fish Hawh Station No. 7106 , about 30 specimens (S. hemicki).
Anclote Section, Florida, 12 $\frac{1}{2}$ fathoms, Fish Hawk Station No. 7106, 6 specimens (type of form rimidiatus).
Anclote Section, Floridia, $12 \frac{1}{2}$ fathoms, Fish IIawh Station No. 7106,1 specimen (type of form angustipes).
Gulf of Mexico, lat. $29^{\circ} 15^{\prime} 30^{\prime \prime}$ N., long. $85^{\circ} 29^{\prime} 30^{\prime \prime} \mathrm{W} ., 27$ fathoms, Illuatross Station No. 2372,1 specimen (type of S. tammeri).
Type of S. herriclit.-CCat. No. 38404 , U.S.N.M.
Type of S. hemiclit dimidiutus.-Cat. No. 38405 , U.S.N.M.
Type of S. herriclic mugustipes.-Cat. No. 38406, U.S.N.M.
Type of S. tanneri.-Cat. No. 38407, U.S.N.M.

SYNALPHEUS PECTINIGER, new species.

While recalling the preceding species by its small size and very large eggs, this form is also closely allied to S. Tongicarpus Herrick, and may easily be confounded with small specimens of that species.

The frontal margin has three wide teeth, the median narrower in its distal half and a little longer than the lateral, but the width of the intervals separating them is always greater than their depth.

The proportions of the antemular articles are $2,1.1$;, 1 ; the flagella are stout, the external one bifureated after the fifth article. The stylocerite is usually a little shorter than the basal article, though often equaling it, especially in the females.

The superior angle of the basicerite is a right angle, its outer spine very strong, a little shorter than the first two articles of the anten-

F1G. 48.-SYNALPIEES PETTINIGER. \quad, ANTERIOR HALF, FEMALE; $\|^{\prime}$, FRONTAL, AN1) ANTENNAL REGION, MALE; K, LARGE ('IELIPEI) k, NMALI CHELIPED OF FIRST IAIR, MALE AND FEMALE; $k^{\prime \prime \prime}$, FINGERS OF SMALL CIIELIIED OF FIIST PAR ; $k k^{\prime \prime \prime}$, REVERSE OF SMME; l, FOOT OF SECUND PAIR, MALE AND FEMALE: \quad, FOMT OF TIIKD PAIR, MALE AND FENALE; m^{\prime}, DACTYL OF TIIIRD PAIR; t, TELSON, MALE AND FEMALD.
mule. The scaphocerite is absolutely without scale in both sexes; the lateral spine which alone represents it has a concare imner margin, and does not even present at its base a convex prominence marking the place of the absent scale; this spine, at least in its distal half, is more slender than that of the basicerite, in contrast to S. longi-
carpus; it is also shorter than the antennule, especially in the females, while in S. longicarpus it is always longer.

The carpocerite surpasses the antemule by two-thirds or only onehalf of the distal article: it is cylindrical, a little concave on the outside, and 6.8 times as long as wide.

In the males the proportions of the large chela are: Movable finger 1 ; total length 3.5; height 1.2. The anterior margin of the palm bears a strong, sharp-pointed, conical prominence directed obliquely upward. The movable finger is out of the perpendicular for at least half of its length, the inferior margin of the palm rising abruptly in the place of the fixed finger, which is unprovided with any point and serves only to receive in its cavity the inferior processes of the opposing finger.

In the females, with the same general form, the large chela is much more slender, its proportions becoming: Movable finger 1; total length 5 ; height 1.3. The superior margin of the meropodite is a little convex, terminating in a right angle.

The proportion of the large chelæ in the two sexes is about $1: 1.7$.
In the male the proportions of the small chela are: Fingers 1; total length 2.58 ; height 0.88 . The carpus measures 0.62 of the total length. The meropodite is 3.8 times longer than wide.

In the female the proportions become $1,3.2,1.1$, the fingers being shorter. The carpus measures only 0.56 of the total length, and the meropodite is 3.3 times longer than wide. The proportion of the small chelx in the two sexes is hardly 1:1.06.

This appendage is quite characteristic of the species: In both sexes each of the fingers is terminated by a plate divided into three curved and obtuse teeth; on the movable finger, which appears truncated, the teeth are equal and more and more inclined downward; on the fixed finger the imermost tooth is reduced to an obtuse prominence. As the teeth cross each other when the chela is closed, they constitute an effective implement for dividing the preer.

The proportions of the second pair are: First segment of the carpus 1 ; sum of the four following 1.3; chela 1.15. The proportions are the same in the two sexes, the entire member being more robust in the female. The meropodite measures 0.9 of the carpus.

The proportions of the third pair are: Meropodite 2.5; carpus 1 ; propodite 1.64 . The meropodite is 4.3 times longer than wide. In the female these proportions become $2.2,1,1.5$, and the meropodite is a little less thick (4.1). The dactyl has two hooks directed in the same plane as the inferior border, at least in the case of the dorsal hook, which is longer and stronger than the ventral.

All the abdominal pleura, in the male, terminate in a strong triangular point : even the second and the sixth pleosomite are prolonged in two strong spines on both sides of the base of the telson.

The height of the telson, in the male, is 1.24 times its base and 5 times its posterior margin; in the female, the height hardly exceeds the base, and is 3.7 times the posterior margin. In the female, the spines of the superior face are situated on the proximal third; in the male, on the proximal half. Between the inner spines of the posterior margin, which are twice as long as the outer spines, there are three plumose hairs.
The external uropod bears two teeth on its margin, and near the imner tooth a movable spine which is longer in the female. The basal spine of the uropod is strong and curved.

Fig. 49.-Synalpheus pectiniger, abdomen. \uparrow normal; Aq, Bq, Cq, Dq, different degrees of variation in the form of the pleura; C δ°, normal; E σ^{\prime}, abnormal.

The eggs are very large and give rise to mysis larve. I have mentioned above that this species at an overstocked station (Lllbatross Station No. 2413, 320 males, 230 females) presents a considerable excess of males with a marked sterility of the females, as if the latter were more or less completely castrated. Ill the females have the fourth and fifth abdominal pleura ending in a sharp point, as in the males; all, save two have the first plemon spinous; in the very great majority of the females, even when ovigerous, the second and third

Proc, N. M. vol, axxyi-0:-6
pleura also have an obtuse point. In some cases the sex is difficult to determine, as all the pleura are strongly spinous; one can arrive at it, however, to a very great degree of approximation, by noting that the third pleuron in the males is abruptly terminated in a long point, while in the female specimens, even those most doubt ful as to sex, this point is wide and arched.

The species appears very homogeneons and I have not been able to separate any variety from the typical specimens.
Localities:
Gulf of Mexico, lat. 26° N., long. $82^{\circ} 57^{\prime} 30^{\prime \prime} \mathrm{W} ., 24$ fathoms, Allutross Station No. 2413, 320 males, 230 females (with S. longicarpus).
Gulf of Mexico, lat. $25^{\circ} 04^{\prime} 30^{\prime \prime}$ N., long. $82^{\circ} 59^{\prime} 15^{\prime \prime}$ W., $2(;$ fathoms, Alluatross Station No. $2+14,1$ specimen.
Florida, Sugar Loaf Key, 4 specimens.
Bahamas, Elenthera Island, 2 specimens, male and female (largest seel1, 12 and 13 mm).
St. Thomas. West Indies, 2 specimens.
Curaçao, Illutross, 126 males, 167 females, types.
Curaçao, Alloutross, 2 specimens (Cat. No. 7595).
Type.-Cat. No. 384θ, U.S.N.M.

SYNALPHEUS ANDROSI, new species.

This species is represented by a single female. The frontal margin bears 3 equal, obtuse teeth, the rostrom a little less thick than the lateral teeth; the tridentate region is distinct from the rest of the frontal border.

Antennular articles as $1 . \bar{万}, 1.15,1$. Stylocerite wide, shorter than the basal article. superior angle of the basicerite straight, lateral spine reaching the middle of the median antemmar article. The scaphocerite is refluced to its lateral spine, which is as long as the antemule, and a little wider than the spine of the basicerite. The (arpocerite surpasses the antemmle by more than the length of the distal article, and is 7 times as long as wide.

The proportions of the large chela are: Fingers 1: total length 3.4 ; height 1.4 ; it is regularly ovoid and the anterior palmar border bears only a weak conical prominence. The meropodite is unarmed on its superior border.

The small chela measmes: Fingers 1 ; total length $2.5(f$; height 1.2; it is consequently short and thick. The movable finger is terminated by only one sharp point; it is strongly curved, stout at its base, and bears an obtuse tubercle at the middle of its lower margin. The carpus measmes 0.47 of the whole chela : it is less thick than the palm, both measured at the distal extremity (0.73). The small claw and the large one have nearly the ratio of 1 to 2 .

In the second pair the first segment of the carpus, the sum of the four following, and the distal chela are apparently of the same length.

The third pair is very characteristic of the species. Like the small chela of S. pectiniger, its form is, so far as known, unique in the genus Synalpheus. Its proportions are: Meropodite 1.75; carpus 1 ; propodite 0.92 . The meropodite is 3 times as long as wide; its rentral border is widened in the distal half into a flattened surface, which is a little excavated, and margined on the outer side by a transparent wing, on the inner side by a crest much less visible, but bearing some short, strong hairs.

The very elongate carpus, also flattened on the ventral side, is likewise bordered by an outer wing larger than that of the meropodite and capable of concealing it. On the imer side, the crest which borders it bears 5 teeth and some hairs. The propodite itself has upon nearly all its length a crest which seems to be determined by the pressure of that article against the lower border of the meropodite

FIG. 50.-SYNALPHEUS ANDROSI. a, FRONTAL AND ANTENNAL REGION; K, LARGE CHELA; k, SMALL CHELIPED OF FIRST PAIR; m, FOOT OF THIRD PAIR; m ', DACTYL OF THIRD PAIR; $m^{\prime \prime}$, CARPUS AND MEROPODITE OF THIRD PAIR; t, TELSON.
when the leg is fully bent. In this position-which explains why the form of the carpus is more curved than is customary near its articu-lation-the distal end of this article is applied against a short nonexcavate portion of the flattened meral surface, so that between it and the surface of the carpus there exists an interval closed outwardly by the two transparent superimposed plates. There exists in some species of Alpheus of the "crinitus" group, such as A. paralcyone, a form somewhat analogous but much less accentuated. The two hooks of the dactyl are almost equal and a little divergent.

The telson bears on its posterior border 11 plumose hairs between the inner spines, which are 3 times as long as the outer spines. The external ramus of the uropod bears a small movable spine bet ween two adjacent teeth.

The type is a female from Andros Island, Bahamas; F. Stearns collection (Cat. No. 38409, U.S.N.M.).

The frontal margin suggests S. goode i; the rostrum is narrow, with parallel margins, hardly one-sixth of the width of the lateral teeth and slightly longer; the lateral teeth have almost exactly the form, inverted, of the intervals between them and the rostrum, but a little narrower.

The articles of the antennule are to one another as $1.2,1,1$; they are a little wider at the distal extremity and the flagella are stout; the stylocerite reaches the distal third of the basal article.

The superior angle of the basicerite is prolonged in a strong spine reaching as far forward as the stylocerite. This is the only case that

Fig. 51.-SYNALPHEUS RATHBINA. a, FRONTAL AND ANTENNAL REGION; K, LARGE CHELA; k^{\prime}, SMALL CHELIPED OF FIEST PAIR; l, FOUT OF SECOND PAIR; m, FOOT OF THIRD PAIR; m^{\prime}, DACTYL OF THIRD PAIR; t, TELSON ; u, UROPOD.

I have as yet noticed in the Lemmanus group, so that this detail enables one to identify the species immediately. The outer spine, rather slender, reaches the middle of the distal antennular article.

The scaphocerite is reduced to its lateral spine, which has a concave inner margin, is much wider than the spine of the basicerite, and reaches the middle of the distal antennular article. The carpocerite surpasses the antennule by hardly one-half of the same article; it is 4.6 to 4.8 times longer than wide.

The proportions of the large chela are: Fingers 1 ; total length 3.5; height 1.25. But I have also found in one of the few specimens car-
rying eggs the proportions $1,3,1.2$. The palm bears in front a conical tubercle, not spinose, pointing obliquely upward. The movable finger slightly exceeds the fixed finger.

The small chela measures: Fingers 1 ; total length 2.6 ; height 0.95 . The fingers terminate in a single point. The carpus measures 0.5 of the whole chela. The meropodite is very thick, only 2.35 times as long as wide.

The second pair is very remarkable in that the carpus has only four articles. I have encountered the same number in young specimens of S. longicarpus, and especially of S. brooksi, but very exceptionally. Here it is a constant character. It is not certain, to tell the truth, that the specimens examined are normal, at least the females. In about thirty of the specimens I have been able to find only five carrying eggs. Fom of these females each possess but one egg, the fifth has only three. Their abdominal pleura are not only very slightly developed, but they are all terminated by a rery sharp point, and the second pleuron is hardly wider than the first and the third. As the total length of the largest specimen is 7.5 mm ., it is possible that I have had in my hands only dwarfed or emasculated individuals, not showing the true sexual characters of the species. Perhaps in specimens of larger size, if such exist, the second pair would have five segments in the carpus, as in the great majority of the Alpheidæ, the genus Arete (with four segments) being the only exception.
The proportions of the third pair are: Meropodite 2.2; carpus 1; propodite 1.t. The meropodite, rery massive, is only 2.8 times longer than wide. The two hooks of the dactyl are parallel and equal in length, the ventral, however, the stronger.

The spines of the dorsal face of the telson are very long and strong. Between the spines of the posterior margin are four plumose hairs. The outer mropod bears three teeth and a longer movable spine very close to the first tooth.

Named for Miss Mary J. Rathbun, of the U. S. National Museum.
This species recalls especially S. pescadorensis Coutière, of the Malayan Archipelago ; besides the exceptional character of the second pair of feet, it differs from the latter species chiefly in the plume of hairs which surmounts the finger of the small chela, as in all the species of the Laemimanus group.
Localities:
Porto Rico, Mayaguez Harbor, 22 to 33 fathoms, Fish IIawk: Station No. 6064, on dead sponges, 30 specimens, of which about 5 are females.
Vieques, $12 \frac{1}{2}$ fathoms, Fish Hawk Station No. 6095, 1 specimen.
St. Thomas, 20 to 30 fathoms, Fish Hawh Station No. 6079, 7 specimens, types.
Type.-Cat. No. 38410 , U.S.N.M.

SYNALPHEUS PARANEPTUNUS, new species.

The tridentate region joins imperceptibly the rest of the frontal margin; the rostrum is 1.5 times longer than the lateral teeth, and of the same width; these teeth are sharp-pointed at the extremity, while the end of the rostrum is rounded.

The articles of the antennule are as $2,1.3,1$. The stylocerite equals the basal article. The superior angle of the basicerite is a right angle, and well marked; the lateral spine reaches the middle of the median antemular article.

In the females the scaphocerite is almost wholly destitute of a scale. In the males it possesses one, which is always very narrow and in length varies between the extremity of the basal article and the

Fig. 万2.-SyNalifieus paraneptunus. a, frontal and antenna region of type male; a^{\prime}, FRONT AND BASE OF ANTENNA (HF ANOTHER MALE WITH ANTENNA SCALE MURE REDICED; $u^{\prime \prime}$, FRONT AND BASE OF ANTENNAE OF FEMALE WITH ANTENNAE SCALE ABSENT; K, LARGE CHELA: $\boldsymbol{K}^{\prime \prime}$, MELOJODITE AND CARPUS OF LARGE CHELIPED; \boldsymbol{k}^{\prime}, SMALL CHELIPED OF FIRST PAIR; $k^{\prime \prime \prime}$, FINGER OF SAME; l, FOOT OF SECOND FAIR; m, FOOT OF THIRD lAIR; m^{\prime}, DACTYL OF THIRD PAIR; t, TELSON ; u, UROPOD, MALE AND FEMALE.
distal third of the median antenmular article. The lateral spine is considerably wider than that of the basicerite and as long as the antennule.

The carpocerite surpasses the antennular peduncle by the length of the basal article, and is 6 times as long as wide.
The proportions of the large chela are: Fingers 1: total length 3; height 1. The anterior margin of the palm bears a strong tubercle terminating in a small conical point directed downward.

The meropodite is strongly convex on its superior margin, especially near its extremity, where it forms a slight triangular prominence.

The proportions of the small chela are: Fingers 1 ; total length 3; height 1.17 . The carpus measures only 0.4 of the entire chela. In the females these proportions become $1,2.66,1.06$; the fingers being relatively longer, and the carpus measures 0.45 of the entire chela. The movable finger, seen from above, is oval in form and terminates in three mequal teeth, situated in the same horizontal plane; it is a little excarate below, and the lateral teeth mark the extremity of the thin and sharp lateral margins. The tuft of hairs is still present, but it is disposed in only five transverse rows, each numbering six hairs at most. This disposition is rery interesting, as marking one of the extremities of the series of forms which compose the Lemmanus group. In the allied species, like S. luticeps Coutière and S. neptumus Dana, the armature of hairs of the small chela either does not exist or else is very much reduced and differently disposed.
S. rathoume, described elsewhere, is like a second entrance into the Lemmanus gromp throngh it close relations with S^{\prime} : pescadorensis and s. biunguiculutus. This last species may serve to designate another group of forms, almost all from the Indian Ocean and the Pacific, whence the Lemmants group seems to have sprung.

In the second pair the first segment of the carpus and the distal chela are perceptibly equal, the four other segments of the carpus slightly longer.

The proportions of the third pair are: Meropodite 2.2 ; carpus 1 ; propodite 1.5. The meropodite is a little more than 3 times as long as wide (3.1). The ischiopodite is shorter than in the other species of the group, and the dactyl is also of different form, inclining toward such forms as S. minus; the two margins converge slightly and the article is as if split into two parallel hooks, the dorsal a little longer.

The height of the telson equals 1.23 times its base, 2.9 times the posterior margin; the inner spines of the latter are twice as long as the onter, and between them are five plumose hairs and two pairs of simple hairs.

The onter uropod bears 3 to 4 contiguous teeth and a movable spine between the first two.

The eggs give rise to zoër.
The species is very close to S. neptunus Dana, of which I have been able to examine two typical male examples from the Sooloo Sea. The rostrum is slightly longer and narrower than the lateral spines and 4.5 times longer than its middle width. The stylocerite is shorter than the basal antennular article. The superior angle of the basicerite is slightly acute, its lateral spine reaching the proximal third of the median antennular article. The scaphocerite bears, in both cases, a rery narrow scale of the same length as the outer spine
of the basicerite: the lateral spine of the scale does not reach the middle of the distal article of the antennule. The carpocerite is only a little longer than the antennule (one-half of the distal article) and is 5.3 times longer than wide.

The proportions of the large chela are: Fingers 1; total length 4.15; height 1.7. The anterior border of the palm is terminated by a strong horizontal prominence, conical and sharp-pointed. The meropodite has its superior margin unarmed; it is 2.25 times longer than wide.

The proportions of the small chela are: Fingers 1; total length 2.2.) height 0.75 ; the fingers are almost as long as the palm. The movable finger is enlarged laterally, and bears on each margin 5 to 7

Fig. 58.-SYNALPHELS NEPTUNUS. a, FRONTAL AND ANTENNAL, REGION OF A TYPE MALE; a^{\prime}, FRONTAL AND ANTENNA REGION OF ANOTHER TYPE MALE WITH BASICERITE MORE SPINOUS; $u^{\prime \prime}$, FRONT; K, LARGE CHELA; $K^{\prime \prime}$, CARPUS AND MEROPODITE OF LARGE CHELIPED ; k, SMALL CHELA OF FIRST PAIR; k ', SMALL CHELIPED OF FIRST PAIR; l, FOOT OF SECOND PAIR; m, FOOT OF THIRD PAIR; m ', DACTYL OF THIRD PAIR; t, TELSON; u, UROPODS.
hairs regularly spaced, which are perhaps the first indication of the transverse series of hairs present in all of the Lemmants group. Each of these fingers is terminated by a single point. The carpus measures only 0.2.5 of the entire chela, a proportion which is never attained in the Lemmants. The two chela are in the proportion of 1 to 2 .
The second pair has very peculiar proportions, the first segment of the carpus 1 , the sum of the four following segments 2 , distal chela 2.

The proportions of the third pair are: Meropodite 2.3 ; carpus 1 ; propodite 1.9 ; meropodite 4 times as long as wide. The two hooks of
the dactyl are divergent, the rentral stronger, almost perpendicular to the inferior margin.

The height of the telson equals 1.5 times its base, 3.5 times its posterior margin. The latter has two pairs of weak spines, between which the convex margin bears 7 to 8 phmose hairs. The outer uropod carries a movable spine between two teeth slightly marked.

The length of the cephalothorax is 3 mm .

Localities:

Jamaica, Albatross, 188t, 2 specimens.
Near Monosquillo, 42 fathoms, Llbatross Station No. 2142, 1 specimen, type, Cat. No. 77 ro, U.S.N.M.

LIST OF EATRA-AMERICAN SPECIES IN THE COLLECTION OF THE đNITED STATES NATIONAL MUSEUM.

SYNALPHEUS ALBATROSSI, new species.

This species, represented by only one female specimen of small size, belongs in the Comatularum group, which it binds to the other groups of forms in a very instructive manner.

Fig. Ј̈.-Sinalpheés albatrossi. a. frontal and antennal region; κ, large chela; $K^{\prime \prime}$, carpus and meropodite of large cheliped ; k, salall cifeliped of first pair; l, FOOT OF SECOND PAIR ; m, FOOT OF Third PAIR; m^{\prime}, DACTYL of third pair.

The frontal spines are large, almost equal in length and with concave borders; rostrum wider than the lateral teeth. The antemular peduncles are short and stout, the stylocerite equal to the basal article.

The basicerite bears two rery short spines, the inferior a little longer, but not attaining the extremity of the frontal spines. The scale of the carpocerite is large, its lateral spine equals the carpocerite, which is 3.7 times as long as wide, and scarcely surpasses the antennules.
The distal article of the outer maxillipeds is only 3.6 times as long as wide, this proportion being 6 times in S. minus, for example.

The proportions of the large chela are: Fingers 1 ; total length 3.5 ; height 1.4. It taper's from behind forward, and bears a weak conical prominence on the palm, continuing the upper margin. Meropodite very thick and unarmed, only twice as long as wide.

The small chela, the carpus of which is short, has the following proportions: Fingers 1 ; total length 3 ; height 1 . The fingers end in an obtuse point.

The second pair is slender, the first segment of the carpus longer than the sum of the 4 others, the distal chela small. The following feet are also slender, the meropodite being 4.5 times as long as wide. The dactyl is elongate and is terminated by two parallel hooks, the ventral a little shorter and thicker, a form which recalls the species of the Paclsonigroup.

The telson is like that of the species of this group, its posterior margin being rery little convex.

Laysan Island, 10 to 19 fathoms, Albatross Station No. 3960, 1 female. 9 mm . long, type, Cat. No. 38344 , U.S.N.M.

SYNALPHEUS CHARON (Heller).

Hawaiian Islands, Albatross Stations Nos. 3955, 3962, and 4073.
SYNALPHEUS PARANEOMERIS Coutière.
Hawaiian Islands, Allatross Stations Nos. 3921, 3960.
SYNALPHEUS GRAVIERI Coutière.
Southern Japan, Albatross Station No. 3729.
SYNALPHEUS LEEVIMANUS (Heller).
Adriatic Sea.
SYNALPHEUS NEOMERIS de Man.
Shanghai.
DEACRIPTIONS OF NEW EXTRA-AMERICAN SPECIES MENTIONED IN THIS PAPER, BLT NOT IN THE COLLECTION OF THE UNITED STATES NATIONAL, MUSEUM.

SYNALPHEUS MEROSPINIGER, new species.

Very near S. neomeris de Man, differing especially in the dactyl, the two hooks of which are almost equal. The supraorbital spines are also wider, the antennular peduncle more robust (ratio of length to
width $1: 4.5$ instead of $1: 5$ in S. neomeris. $)$, the stylocerite longer. and the carpocerite more slender (ratio $1: 4.4$ instead of $1: 4$).

Amirante Islands, Seychelles Group; Percy Sladen Trust Experlition.

Type in Paris Museum.
SYNALPHEUS TRIONYCHIS, new species.
Very close to S. fossor Paulson, differing in the carpocerite which has the proportion of $1: 5$ instead of $1: 6$, in the large cheliped spinons on the palm and the merus, in the small chela less thick than its meropodite, and in the stronger feet of the third pair; in the dactyl of this member the ventral supernumerary hook is sharp and directed forward, and the dorsal hook is almost as long as the principal hook.

Saya de Malha, western Indian Ocean; Percy Sladen Trust Expedition.

Type in Paris Museum.

SYNALPHEUS BAKERI, new species.

Allied to S. triunguiculatus Panlson, from which it differs in the rostrum 1.5 times as long as the lateral spines, the carpocerite stout (ratio 1:3.6 instead of $1: 4.5$), and shorter than the antennal spine, the palm of the large chela marmed, and the meropodites of the two chelipeds almost marmed. The dactyl of the third and fourth pairs is much smaller, and the ventral supernumerary hook is not one-third of the principal hook, while it is three-fourths of the same in S. triunguiculatus.

South Adelaide, South Australia; M. Baker, collector, for whom it is named.

Type in Paris Museum.

SYNALPHEUS PHYSOCHELES, new species.

Differs from S. triunguiculatus Paulson, especially in the large chela, the palm of which is very swollen and the fingers extremely short (fingers 1, total length 5.33, height 2.2). The fingers of the small chela are contained 3 times in the total length (instead of 2.7 times). The feet of the third pair are more slender, the meropodite being 4 times and the propodite 7 times longer than wide (instead of 5.5 and 3.3 times).

Djibouti, French Somaliland; Ch. Gravier.
Type in Paris Museum.

SYNALPHEUS OTIOSUS, new species.

Differs from S. paraneomeris Coutière in the shorter carpocerite ratio $1: 3$ instead of $1: 4$), in the unarmed meropodite of the large cheliped, that of the third pair stouter (ratio $1: 3.5$ instead of $1: 4$), the propodite of 5 spines instead of 8 , the telson wider at its distal extremity (proportion of the bases $1: 1.5$ instead of $1: 1.85$).

Cotivy Island, Seychelles Group; Percy Sladen Trust Expedition.
Type in Paris Museum.

SYNALPHEUS PAULSONI LIMINARIS, new subspecies.

Differs from S. paulsoni Nobili in the superior spine of the basicerite being almost wanting, in having the carpocerite a little more elongate, at least 3.5 times as long as wide (2.9 to 3.1 in S. paulsoni), and in having the palm of the large chela always terminated by a strong anterior spine.

Djibouti. French Somaliland; Ch. Gravier. Persian Gulf; Bonnier and Perez.

Type in Paris Museum.

SYNALPHEUS PAULSONI SENEGAMBIENSIS, new subspecies.

Differs from all the other forms of S. paulsoni by the more slender earpocerite (ratio $1: 3.7$), which approaches that of S. hutulensis, but the superior spine of the basicerite is more slender than in that species, the posterior angles of the telson right angles and the meropodite of the small cheliped is marmed on its superior border (the large cheliped is lacking).

Cape Verde: Talisman.
Type in Paris Musenm.

SYNALPHEUS MUSHAENSIS, new species.

Differs from very similar forms of the Paulsoni gromp, by the carpocerite (proportion 1:3.6) surpassing the antennule ly the whole length of the distal article of the latter; by the scaphocerite, the scale of which is wide and shorter than the antennule, while its lateral spine exceeds it very slightly: by the stylocerite not reaching beyond the inferior spine of the basicerite. The large claw has short fingers (proportions: fingers 1 , total length 4.2, height 1.6), the palm bears a feeble flattened prominence on its anterior margin, the supero-external margin of the meropodite is spinous. The small claw has the following proportions: fingers 1 , total length 3.12, height 1 . The posterior angles of the telson are right angles except for a very slight spinous prominence ($\frac{1}{4}$ of the onter spine).

Musha Islands, Gulf of Aden; Ch. Gravier.
Type in Paris Museum.
SYNALPHEUS MACCULLOCHI, new species.
Closely allied to S. panlsoni kurracheensis, but differs especially in the large size of the eges, which produce mysis lavee, as in S. tumidomanus Paulson. The rostrum is narrower and longer, the spine of the basicerite much slenderer. The carpocerite has the same proportions. The palm of the large chela is marmed. The meropodite of the third pair is 4.5 times as long as wide, instead of 4 times.

Port Jackson, New South Wales (type) : A. McCulloch, for whom the species is named. South Adelaide, South Australia; II. W. Baker.

Type in Paris Museum.

SYNALPHEUS LOPHODACTYLUS, new species.

Differs from S. binnguiculutus Stimpson in having the basicerite unarmed above, the posterior angles of the telson spinons, ant the movable finger of the small chela bearing a dorsal brush of hairs and not some lateral bunches. Furthermore, the antennular peduncles and the carpocerite are short (ratio $1: 4$ for both), the antennal scale is large, the feet of the third pair are slender (proportions of the meropodite $1: 4.5$ instead of $1: 3$ in S. binnguirnlatus exilipers Contière, which approaches it the most in this regard).

Diego Garcia, Chagos Archipelago; Perey Sladen Trust Expedition.

Type in Paris Musemm.

SYNALPHEUS SLADENI, new species.

Differs from all the other species of the Lemmanus gromp by the considerable prominence of the frontal borter, the basicerite being feebly spinous below, the antemal scale large, the large chela cylindrical, almost 3.5 times as long as high, the feet of the third pair slender (proportions of the meropodite 1:5.4), and the telson rery narrow with posterior right angles. It approaches the species of the Comatolarum group, while the small chela is altogether comparable to that of S. longicarpus.

Cargados Carajos, western Indian Ocean; Percy Sladen Trust Expedition (to which the specific name is dedicated).

Type in Paris Museum.

[^0]: ${ }^{a}$ Translated from the French by Miss Mary J. Rathbun.

[^1]: ${ }^{a}$ It is more convenient and expressive to desimnate by the name "oxyecros" every subspecies showing this variation, but in deference to the accepted rule of nomenclature which forbids duplication of names within a single genns, I have in this paper used different names having a similar meaning, as longicornis, elongatus, productus, prolatus, extentus.

[^2]: ${ }^{a}$ Annales des Sciences Naturelles (S), IX, 1S90, m!. 1-56.
 b The Fatma and Geography of the Maldive and Latcative Archipelagoes, II, Pt. 4, 1905, 1!. S52-920.

[^3]: ${ }^{a}$ Hist. Cuba de Ramon de la Sugra, I't. \because, VII, 1857, p. 18, pl. 11, fig. S.

[^4]: ${ }^{a}$ For comparison with S. longicarpus approxima, fig. 32.

